Схема кроветворения

Схема кроветворения

Кроветворение — гемопоэз — это процесс развития кле­точных элементов, который приводит к образованию зрелых клеток периферической крови.

Процесс кроветворения можно изобразить в виде схемы, в которой клетки расположены в определенной последовательности, осно­ванной на степени их созревания. Согласно современным представлениям о кроветворении все клетки крови проис­ходят из одной, которая дает начало трем росткам кроветворения: лейкоцитарному, эритроцитарному и тромбоцитарному.

В схеме кроветворения клетки крови разделены на 6 классов. Первые четыре класса составляют клетки-предшественники, пятый класс — созревающие клетки и шестой — зрелые.

Класс I.- Класс полипотентных клеток — предшественников

Представлен стволовыми клетками, количе­ство которых в кроветворной ткани составляет доли процента. Эти клетки способны к неограниченному само поддержанию в течение длительного времени (больше, чем продолжительность жизни человека). Стволовые клетки полипотентные, т. е. из них развиваются все ростки кро­ветворения. Большая часть стволовых клеток находится в состоянии покоя и только около 10% из них делятся. При делении образуются два типа клеток — стволовые (само поддержание) и клетки, способные к дальнейшему разви­тию (дифференцировке). Последние составляют следу­ющий класс.

II.Класс частично детерминированных полипотентных клеток предшественников

Представлен ограниченно полипотентными клетками, т. е. клетками, которые способны дать начало либо лимфопоэзу (образованию клеток лимфоидного ря­да), либо миелопоэзу (образованию клеток миелоидного ряда). В отличие от стволовых клеток они способны лишь к частичному само поддержанию.

Класс III. Класс унипотентных клеток — предшественников

В процессе дальнейшей дифференцировки образуются клетки, называемые унипотентными предше­ственниками. Они дают начало одному строго определен­ному ряду клеток: лимфоцитам, моноцитам и гранулоцитам (лейкоцитам, имеющим в цитоплазме зернистость), эритроцитам и тромбоцитам.

В костном мозге обнаруживается две категории кле­ток-предшественников лимфоцитов, из которых образуют­ся. В — и Т-лимфоциты. В-лимфоциты созревают в костном мозге, а затем заносятся кровотоком в лимфоидные органы. Из предшественников В-лимфоцитов образуются плазмоциты. Часть лимфоцитов в эмбриональном периоде поступает через кровь в вилочковую железу (thymus) и обозначается как Т-лимфоциты. В дальнейшем они диф­ференцируются в лимфоциты.

Клетки этого класса также не способны к длительному само поддержанию, но способные к размножению и дифференцировке.

Все клетки трех классов морфологически не дифференцируемые клетки

Класс IV.Морфологически распознаваемых пролиферирующих клеток

Представлен .молодыми, способными к делению клетками, образующими отдельные ряды миело и лимфопоэза. Все элементы этого ряда имеют окончание «бласт»: плазмобласт, лимфобласт, монобласт, миелобласт, эритробласт, мегакариобласт. Из клеток этого клас­са в процессе деления образуются клетки следующего класса.

Класс V.Класс созревающих клеток

Представлен созревающими клетками, назва­ния которых имеют общее окончание «цит». Все элементы этого класса расположены в схеме по вертикали и определенной последовательности, обусловленной стадией их развития.

Названия клеток первой стадии начинаются пристав­кой «про» (перед): проплазмоцит, пролимфоцит, промоноцит, промиелоцит, пронормоцит, промегакариоцит. Эле­менты гранулоцитарного ряда проходят еще две стадии в процессе развития: миелоцит и метамиелоцит («мета» означает после). Метамиелоцит, находящийся на схеме ниже миелоцита, представляет переход от миелоцита к зрелым гранулоцитам. К клеткам этого класса относят также и палочкоядерные гранулоциты. Пронормоциты в процессе эритропоэза проходят стадии нормоцитов, кото­рые, в зависимости от степени насыщения гемоглобином цитоплазмы, имеют добавочные определения: нормоцит базофильный, нормоцит полихроматофильный и нормоцит оксифильный. Из них образуются ретикулоциты — незрелые эритроциты с остатками ядерной субстанции.

Класс VI. Класс зрелых клеток

Представлен зрелыми клетками, неспособ­ными к дальнейшей дифференцировке с ограниченным жизненным циклом. К ним относятся: плазмоцит, лимфо­цит, моноцит, сегментоядерные гранулоциты (эозинофил, базофил, нейтрофил), эритроцит, тромбоцит.

Зрелые клетки поступают из костного мозга в перифе­рическую кровь.

Показателем. характеризующим состояние костномозгового кроветворения. является миелограмма – количественное соотношение клеток разной степени зрелости всех ростков кроветворения

/ Кроветворение

1. Виды кроветворения2. Теории кроветворения 3. Т-лимфоцитопоэз 4. В-лимфоцитопоэз

1. Кроветворение (гемоцитопоэз) — процесс образования форменных элементов крови.

Различают два вида кроветворения: а) миелоидное кроветворение: • эритропоэз; • гранулоцитопоэз; • тромбоцитопоэз; • моноцитопоэз. б) лимфоидное кроветворение: • Т-лимфоцитопоэз; • В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода: • эмбриональный(гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови); • постэмбриональный(представляет собой процесс физиологической регенерации крови как ткани) Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа: • желточный; • гепато-тимусо-лиенальный; • медулло-тимусо-лимфоидный. Желточный этап осуществляется в мезенхиме желточного мешка, начиная со 2—3-ей недели эмбриогенеза, с 4-ой недели он снижается и к концу 3-го месяца полностью прекращается. Процесс кроветворения на этом этапе осуществляется следующим образом, вначале в мезенхиме желточного мешка, в результате пролиферации мезенхимальных клеток, образуются «кровяные островки», представляющие собой очаговые скопления отростчатых мезенхимальных клеток. Затем происходит дифференцировка этих клеток в двух направлениях (дивергентная дифференцировка): • периферические клетки островка уплощаются, соединяются между собой и образуют эндотелиальную выстилку кровеносного сосуда; • центральные клетки округляются и превращаются в стволовые клетки. Из этих клеток в сосудах, то есть интраваскулярно начинается процесс образования первичных эритроцитов (эритробластов, мегалобластов). Однако часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.

Наиболее важными моментами желточного этапа являются: — образование стволовых клеток крови; — образование первичных кровеносных сосудов. Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

Гепато-тимусо-лиенальный этап гемопоэза

Этот этап осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается.

Тимус закладывается на 7—8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25—30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка.

Селезенка закладывается на 4-й неделе, с 7—8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде. Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.

Медулло-тимусо-лимфоидный этап гемопоэза

Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться — экстрамедуллярное кроветворение. Постэмбриональный период кроветворения — осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах). Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови. 2. Теории кроветворения: • унитарная теория (А. А. Максимов, 1909 г.) — все форменные элементы крови развиваются из единого предшественникастволовой клетки; • дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного; • полифилетическая теория предусматривает для каждого форменного элемента свой источник развития. В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.). В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток: • 1 класс — стволовые клетки; • 2 класс — полустволовые клетки; • 3 класс — унипотентные клетки; • 4 класс — бластные клетки; • 5 класс — созревающие клетки; • 6 класс — зрелые форменные элементы. Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения. 1 класс — стволовая полипотентная клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту, является полипотентной, то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток — индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние—образующие единицы — КОЕ. 2 класс — полустволовые, ограниченно полипотентные (или частично коммитированные) клетки—предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3—4 недели) и также поддерживают численность своей популяции. 3 класс — унипотентные поэтин—чувствительные клетки—предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ — поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие). Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны. 4 класс — бластные (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения. 5 класс — класс созревающих клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток — от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты). 6 класс — зрелые форменные элементы крови. Однако следует отметить, что только эритроциты, тромбоциты и сегментоядерные гранулоциты являются зрелыми конечными дифференцированными клетками или их фрагментами. Моноцитыне окончательно дифференцированные клетки. Покидая кровеносное русло, они дифференцируются в конечные клетки — макрофаги. Лимфоциты при встрече с антигенами, превращаются в бласты и снова делятся.

Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образуют его дифферон или гистологический ряд. Например, эритроцитарный дифферон составляет: стволовая клетка, полустволовая клеткапредшественница миелопоэза, унипотентная эритропоэтинчувствительная клетка, эритробласт, созревающие клеткипронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит, эритроцит. В процессе созревания эритроцитов в 5 классе происходит: синтез и накопление гемоглобина, редукция органелл, редукция ядра. В норме пополнение эритроцитов осуществляется в основном за счет деления и дифференцировки созревающих клетокпронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения носит название гомопластического кроветворения. При выраженной кровопотери пополнение эритроцитов обеспечивается не только усиленным делением созревающих клеток, но и клеток 4, 3, 2 и даже 1 классовгетеропластический тип кроветворения, предшествующий собой уже репаративную регенерацию крови.

3. Т-лимфоцитопоэз В отличие от миелопоэза, лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа: • костномозговой этап; • этап антиген—независимой дифференцировки, осуществляемый в центральных иммунных органах; • этап антиген—зависимой дифференцировки, осуществляемый в периферических лимфоидных органах. На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген. Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению. Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток: • 1 класс — стволовые клетки; • 2 класс — полустволовые клетки-предшественницы лимфоцитопоэза; • 3 класс — унипотентные Т-поэтинчувствительные клетки—предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса. Второй этап — этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты — 4 класс, затем в Т-пролимфоциты — 5 класс, а последние в Т-лимфоциты — 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов: киллеры, хелперы и супрессоры. В корковом веществе тимуса все перечисленные субпопуляции Т-лимфоцитов приобретают разные рецепторы к разнообразным антигенным веществам (механизм образования Т-рецепторов остается пока невыясненным), однако сами антигены в тимус не попадают. Защита Т-лимфоцитопоэза от чужеродных антигенных веществ достигается двумя механизмами: • наличием в тимусе особого гемато-тимусного барьера; • отсутствием лимфатических сосудов в тимусе. В результате второго этапа образуются рецепторные (афферентные или Т0-) Т-лимфоциты — киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Образованные в корковом веществе Т-рецепторные лимфоциты (киллеры, хелперы и супрессоры), не заходя в мозговое вещество, проникают в сосудистое русло и током крови заносятся в периферические лимфоидные органы. Третий этап — этап антигенезависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов — лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Однако в большинстве случаев антиген действует на лимфоцит не непосредственно, а опосредованно — через макрофаг, то есть вначале макрофаг фагоцитирует антиген, частично расщепляет его внутриклеточно, а затем активные химические группировки антигена — антигенные детерминанты выносятся на поверхность цитолеммы, способствуя их концентрации и активации. Только затем эти детерминанты макрофагами передаются на соответствующие рецепторы разных субпопуляций лимфоцитов. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена. Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются: • Т-памяти (киллеры); • Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток. После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ — бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного. Т-хелперный иммунобласт дает клон клеток, среди которых различают Т-памяти, Т-хелперы, секретирующие медиатор — лимфокин, стимулирующий гуморальный иммунитет — индуктор иммунопоэза. Аналогичен механизм образования Т-супрессоров, лимфокин которых угнетает гуморальный ответ. Таким образом, в итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов, которые при повторной встрече с этим же антигеном снова обеспечат иммунную защиту организма в виде вторичного иммунного ответа. В обеспечении клеточного иммунитета рассматривают два механизма уничтожения киллерами антигенных клеток: • контактное взаимодействие — «поцелуй смерти», с разрушением участка цитолеммы клетки-мишени; • дистантное взаимодействие — посредством выделения цитотоксических факторов, действующих на клетку-мишень постепенно и длительно.

4. В-лимфоцитопоэз Первый этап В-лимфоцитопоэза осуществляется в красном костном мозге, где образуются следующие классы клеток: • 1 класс — стволовые клетки; • 2 класс — полустволовые клетки-предшественницы лимфопоэза; • 3 класс — унипотентные В-поэтинчувствительные клетки-предшественницы В-лимфоцитопоэза. Большинство исследователей считает, что второй этапантигеннезависимой дифференцировкиосуществляется в красном костном мозге, где из унипотентных В-клеток образуются В-лимфобласты — 4 класс, затем В-пролимфоциты — 5 класс и лимфоциты — 6 класс (рецепторные или В0). В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам. При этом установлено, что рецепторы представлены белками-иммуноглобулинами, которые синтезируются в самих же созревающих В-лимфоцитах, а затем выносятся на поверхность и встраиваются в плазмолемму. Концевые химические группировки у этих рецепторов различны и именно этим объясняется специфичность восприятия ими определенных антигенных детерминант разных антигенов.

Третий этап — антигензависимая дифференцировка осуществляется в В-зонах периферических лимфоидных органов (лимфатических узлов, селезенки и других) где происходит встреча антигена с соответствующим В-рецепторным лимфоцитом, его последующая активация и трансформация в иммунобласт. Однако это происходит только при участии дополнительных клеток — макрофага, Т-хелпера, а возможно и Т-супрессора, то есть для активации В-лимфоцита необходима кооперация следующих клеток: В-рецепторного лимфоцита, макрофага, Т-хелпера (Т-супрессора), а также гуморального антигена (бактерии, вируса, белка, полисахарида и других). Процесс взаимодействия протекает вследующей последовательности:

· макрофаг фагоцитирует антиген и выносит детерминанты на поверхность;

· воздействует антигенными детерминантами на рецепторы В-лимфоцита;

· воздействует этими же детерминантами на рецепторы Т-хелпера и Т-супрессора.

Влияние антигенного стимула на В-лимфоцит недостаточно для его бласттрансформации. Это происходит только после активации Т-хелпера и выделения им активирующего лимфокина. После такого дополнительного стимула наступает реакция бласттрансформации, то есть превращение В-лимфоцита в иммунобласт, который носит название плазмобласта. так как в результате пролиферации иммунобласта образуется клон клеток, среди которых различают:

· плазмоциты, которые являются эффекторными клетками гуморального иммунитета.

Эти клетки синтезируют и выделяют в кровь или лимфу иммуноглобулины (антитела) разных классов, которые взаимодействуют с антигенами и образуются комплексы антиген-антитело (иммунные комплексы) и тем самым нейтрализуют антигены. Иммунные комплексы затем фагоцитируются нейтрофилами или макрофагами.

Однако активированные антигеном В-лимфоциты способны сами синтезировать в небольшом количестве неспецифические иммуноглобулины. Под влиянием лимфокинов Т-хелперов наступает во-первых, трансформация В-лимфоцитов в плазмоциты, во-вторых, заменяется синтез неспецифических иммуноглобулинов на специфические, в третьих, стимулируется синтез и выделение иммуноглобулинов плазмоцитами. Т-супрессоры активируются этими же антигенами и выделяют лимфокин, угнетающий образование плазмоцитов и синтез ими иммуноглобулинов вплоть до полного прекращения. Сочетанным воздействием на активированный В-лимфоцит лимфокинов Т-хелперов и Т-супрессоров и регулируется интенсивность гуморального иммунитета. Полное угнетение иммунитета носит название толерантности или ареактивности. то есть отсутствия иммунной реакции на антиген. Оно может обуславливаться как преимущественным стимулированием антигенами Т-супрессора, так и угнетением функции Т-хелперов или гибелью Т-хелперов (например, при СПИДе).

Презентация на тему: Современная схема кроветворения. Регуляция гемопоэза

Современная теория кроветворения Современная теория кроветворения базируется на унитарной теории А.А. Максимова (1918), согласно которой все клетки крови происходят из единой родоначальной клетки, морфологически напоминающей лимфоцит. Подтверждение этой гипотезы было получено лишь в 60-е годы при введении смертельно облученным мышам донорского костного мозга. Клетки, способные восстанавливать гемопоэз после облучения или токсических воздействий, носят название «стволовых клеток»

СХЕ КМ РА ОВЕТВОРЕНИЯ

Современная теория кроветворения Нормальное кроветворение поликлональное, т. е. осуществляется одновременно многими клонами.Размер индивидуального клона — 0,5-1 млн зрелых клетокПродолжительность жизни клона — не превышает 1 месяц, около 10% клонов существуют до полугода. Клональный состав кроветворной ткани полностью меняется в течение 1-4 месяцев. Постоянная замена клонов объясняется истощением пролиферативного потенциала стволовой кроветворной клетки, поэтому исчезнувшие клоны никогда не появляются вновь. Различные гемопоэтические органы заселены разными клонами и только некоторые из них достигают такой величины, что оккупируют более чем одну кроветворную территорию.

Дифференцировка клеток гемопоэза Клетки гемопоэза условно подразделены на 5-6 отделов, границы между которыми весьма размыты, а между отделами содержится много переходных, промежуточных форм. В процессе дифференцировки происходит постепенное снижение пролиферативной активности клеток и способности развиваться сначала во все кроветворные линии, а затем во все более ограниченное количество линий.

Дифференцировка клеток гемопоэза I отдел – тотипотентная эмбриональная стволовая клетка (ЭСК), находится на самом верху иерархической лестницы II отдел — пул поли — или мультипотентных стволовых кроветворных клеток (СКК)СКК обладают уникальным свойством — полипотентностью, т. е. способностью к дифференцировке во все без исключения линии гемопоэза. В клеточной культуре можно создать условия, когда возникающая из одной клетки колония содержит до 6 различных клеточных линий дифференцировки.

Стволовые кроветворные клетки СКК закладываются в период эмбриогенеза и расходуются последовательно, образуя сменяющие друг друга клоны более зрелых кроветворных клеток.90% клонов являются короткоживущими, 10% клонов может функционировать в течение длительного времени. СКК обладают высоким, но ограниченным пролиферативным потенциалом, способны к ограниченному самоподдержанию, т. е. не бессмертны. СКК могут проделать приблизительно 50 клеточных делений, поддерживают продукцию кроветворных клеток в течение всей жизни человека.

Стволовые кроветворные клетки Отдел СКК гетерогенен, представлен 2 категориями предшественников, обладающих различным пролиферативным потенциалом. Основная масса СКК находится в фазе покоя G0 клеточного цикла, обладает огромным пролиферативным потенциалом. При выходе из покоя СКК вступает на путь дифференцировки, снижая пролиферативный потенциал и ограничивая набор дифференцировочных программ. После нескольких циклов деления (1-5) СКК может вернуться вновь в состояние покоя, при этом их состояние покоя менее глубоко и при наличии запроса они отвечают быстрее, приобретая маркеры определенных линий дифференцировок в культуре клеток за 1-2 дня, тогда как исходным СКК требуется 10-14 дней. Длительное поддержание кроветворения обеспечивается резервными СКК. Необходимость срочного ответа на запрос удовлетворяется за счет СКК, прошедших дифференцировку и находящихся в состоянии быстро мобилизуемого резерва.

Стволовые кроветворные клетки Гетерогенность пула СКК и степень их дифференцировки устанавливается на основе экспрессии ряда дифференцировочных мембранных антигенов. Среди СКК выделены: примитивные мультипотентные предшественники (CD34+Thyl+) более дифференцированные предшественники, характеризующиеся экспрессией антигена гистосовместимости II класса (HLA-DR), CD38. Истинные СКК не экспрессируют линейно специфические маркеры и дают рост всем линиям гемопоэтических клеток. Количество СКК в костном мозге — около 0,01%, а вместе с клетками-предшественниками — 0,05%.

Стволовые кроветворные клетки Одним из основных методов изучения СКК является метод колониеобразования in vivo или in vitro, поэтому иначе СКК называют “колониеобразующими единицами” (КОЕ). Истинные СКК способны к формированию колоний из бластных клеток (КОЕ-бластные). Сюда же относят клетки, формирующие селезеночные колонии (КОЕс). Эти клетки способны полностью восстанавливать гемопоэз.

Дифференцировка клеток гемопоэза III отдел — По мере снижения пролиферативного потенциала СКК дифференцируются в полиолигопотентные коммитированные клетки-предшественники, имеющие ограниченную потентность, так как коммитированы (commit — принятие на себя обязательств) к дифференцировке в направлении 2-5 гемопоэтических клеточных линий. Полиолигопотентные коммитированные предшественники КОЕ-ГЭММ (гранулоцитарно-эритроцитарно-макрофагально-мегакариоцитарные) дают начало 4 росткам гемопоэза, КОЕ-ГМ — двум росткам. КОЕ-ГЭММ являются общим предшественником миелопоэза. Они имеют маркер CD34, маркер миелоидной линии CD33, детерминанты гистосовместимости HLA-A, HLA-B, HLA-C, HLA-DR.

Дифференцировка клеток гемопоэза Клетки IV отдела — монопотентные коммитированные предшественники являются родоначальными для одного ростка гемопоэза: КОЕ-Г для гранулоцитарного, КОЕ-М — для моноцитарно-макрофагального, КОЕ-Э и БОЕ-Э (бурстобразующая единица) — предшественники эритроидных клеток, КОЕ-Мгкц — предшественники мегакариоцитов Все коммитированные клетки-предшественники имеют ограниченный жизненный цикл и не способны к возвращению в состояние клеточного покоя. Монопотентные коммитированные предшественники экспрессируют маркеры соответствующей клеточной линии дифференцировки.

СКК и клетки-предшественники обладают способностью к миграции — выходу в кровь и возвращению в костный мозг, что получило название “homing-effect” (инстинкт дома). Именно это их свойство обеспечивает обмен кроветворных клеток между разобщенными кроветворными территориями, позволяет использовать их для трансплантации в клинике.

Дифференцировка клеток гемопоэза V отдел морфологически распознаваемых клеток включает: дифференцирующиеся, созревающие зрелые клетки всех 8 клеточных линий, начиная с бластов, большинство из которых имеют характерные морфоцитохимические особенности.

Регуляция гемопоэза Кроветворная ткань — динамичная, постоянно обновляющаяся клеточная система организма. В минуту в кроветворных органах образуется более 30 млн клеток. В течение жизни человека — около 7 тонн. По мере созревания, образующиеся в костном мозге клетки, равномерно поступают в кровеносное русло.Эритроциты циркулируют в крови — 110-130 суток, тромбоциты — около 10 суток, нейтрофилы — менее 10 ч. Ежедневно теряется 1х10¹¹ клеток крови, что восполняется «клеточной фабрикой» — костным мозгом. При повышении запроса на зрелые клетки (кровопотеря, острый гемолиз, воспаление), производство может быть увеличено в течение нескольких часов в 10-12 раз. Увеличение клеточной продукции обеспечивается гемопоэтическими факторами роста

Регуляция гемопоэза Гемопоэз инициируется ростовыми факторами, цитокинами и непрерывно поддерживается благодаря пулу СКК. Стволовые кроветворные клетки стромозависимы и воспринимают короткодистантные стимулы, получаемые ими при межклеточном контакте с клетками стромального микроокружения. По мере дифференцировки клетка начинает реагировать на дальнедействующие гуморальные факторы. Эндогенная регуляция всех этапов гемопоэза осуществляется цитокинами через рецепторы на клеточной мембране, посредством которых про водится сигнал в ядро клетки, где происходит активация соответствующих генов. Основными продуцентами цитокинов являются моноциты, макрофаги, активированные Т -лимфоциты, стромальные элементы — фибробласты, эндотелиальные клетки и др.

Регуляция гемопоэза Обновление СКК происходит медленно и при готовности к дифференцировке (процесс коммитирования), они выходят из состояния покоя (Go — фаза клеточного цикла) и становятся коммитированными. Это означает, что процесс стал необратимым и такие клетки, управляемые цитокинами, пройдут все стадии развития вплоть до конечных зрелых элементов крови.

Схема регуляции эритро- и гранулоцито-монопоэза

Регуляторы гемопоэза Выделяют позитивные и негативные регуляторы гемопоэза. Позитивные регуляторы необходимы: для выживания СКК и их пролиферации, для дифференцировки и созревания более поздних стадий гемопоэтических клеток. К ингибиторам (негативные регуляторы) пролиферативной активности СКК и всех видов ранних гемопоэтических предшественников относят :трансформирующий ростовой фактор β (TGF-β), макрофагальный воспалительный белок (MIP-1α), фактор некроза опухоли а (ФНО-α), интерферон -а интерферон -у, кислые изоферритины, лактоферрин другие факторы.

Факторы регуляции гемопоэза Факторы регуляции гемопоэза подразделяются на короткодистантные (для СКК) и дальнодействующие для коммитированных предшественников и созревающих клеток. В зависимости от уровня дифференцировки клетки факторы регуляции делят на 3 основных класса: 1. Факторы, влияющие на ранние СКК:фактор стволовых клеток (ФСК), гранулоцитарный колониестимулирующий фактор (Г — КСФ), интерлейкины (ИЛ-6, ИЛ-11, ИЛ-12), ингибиторы, которые тормозят выход СКК в клеточный цикл из состояния покоя (MIP-1α, TGF-β, ФНО-α, кислые изоферритины и др.). Эта фаза регуляции СКК не зависит от запросов организма.

Факторы регуляции гемопоэза 2. Линейно-неспецифические факторы:ИЛ-3,ИЛ-4, ГМ-КСФ (для гранулоцитомонопоэза). 3. Позднедействующие линейно-специфические факторы, которые поддерживают пролиферацию и созревание коммитированных предшественников и их потомков:эритропоэтин, тромбопоэтин, колониестимулирующие факторы (Г-КСФ, М-КСФ, ГМ-КСФ), ИЛ-5. Один и тот же ростовой фактор может действовать на разнообразные клетки-мишени на различных этапах дифференцировки, что обеспечивает взаимозаменяемость молекул, регулирующих гемопоэз.

Активация и функционирование клеток зависит от многих цитокинов. Клетка начинает дифференцировку только после взаимодействия с факторами роста, но в выборе направления дифференцировки они не участвуют. Содержание цитокинов определяет количество продуцируемых клеток, число проделываемых клеткой митозов. Так, после кровопотери снижение рО2 в почках приводит к усилению продукции эритропоэтина, под действием которого эритропоэтинчувствительные эритроидные клетки — предшественники костного мозга (БОЕ-Э), увеличивают на 3-5 число митозов, что повышает образование эритроцитов в 10-30 раз. Число тромбоцитов в крови регулирует выработку фактора роста и развитие клеточных элементов мегакариоцитопоэза. Еще одним регулятором гемопоэза является апоптоз — запрограммированная клеточная смерть

Важность процесса гемопоэза и схема гемопоэза в жизни человека

Организм человека является очень сложной системой, все структуры которой взаимосвязаны. Разрыв даже одного звена влечет за собой неминуемые негативные последствия. Основой жизни организма является кровь. Процесс ее образования (гемопоэз) подчинен множеству факторов и регулируется на разных уровнях. Эта система очень хрупкая, но важная, поэтому даже малейшие изменения хотя бы одного компонента могут послужить причиной серьезных проблем со здоровьем.

Что представляет собой процесс кроветворения и где он происходит

Сам по себе гемопоэз — это многоэтапная последовательность получения взрослых кровяных клеток из клеток, которые являются их предшественниками и в норме не встречаются в циркулирующей по сосудам крови. Зрелыми называются клетки, которые обычно обнаруживаются в нормальном анализе крови человека.

Схема кроветворения

Где же происходят все эти сложные процессы? Клетки предшественницы образуются в ряде органных структур человеческого тела.

  1. Основным коллектором кроветворных процессов является костный мозг. Все действо идет в полостях костей, где находится стромальное микроокружение. К частичкам такого окружения относятся клетки, выстилающие сосуды, фибробласты, костные клетки, жировые и многие другие. Все, что их окружает, состоит из белков, различных волокон, между которыми находится основное костное вещество. В строме есть адгезивная составляющая, которая как бы притягивает основные кроветворящие клетки. Самые «первые» структуры схемы гемопоэза находятся в костном мозге. Родоначальники лимфоцитов образуются здесь же, а дозревают потом в вилочковой железе и селезенке, а также в лимфоузлах.
  2. Селезенка – еще один немаловажный орган. Она состоит из красной и белой зон. В красной зоне складируются и разрушаются эритроциты, в белой зоне обитают т-лимфоциты. Склады в-лимфоцитов находятся по окружности от красной зоны.
  3. Вилочковая железа – основной «завод» по производству лимфоцитов. Туда попадают из костного мозга недозрелые клетки. В тимусе они очень быстро преобразуются, большая часть из них гибнет, а выжившие превращаются в хелперов и супрессоров и направляются к селезенке и лимфоузлам. Чем старше человек, тем меньше его вилочковая железа. Со временем она полностью редуцируется, становясь комком жира.
  4. Лимфоузлы – это так называемые иммунные ответчики, которые за счет предоставления антигена первые реагируют на изменения в иммунитете. По периферии узла находятся Т-лимфоциты, а в сердцевине – зрелые клетки.
  5. Пейеровы бляшки – аналог узлов, только расположены они по ходу кишечника.

Таким образом, практически все органы напрямую или косвенно связаны с кроветворением.

Основные этапы производства крови в организме

Все этапы могут быть разделены по принципу того, какая клетка крови производится.

Производство эритроцитов

Схема кроветворения

Данный процесс осуществляется в 18 этапов. Самым первым этапом в дифференцировке является эритроцитарная единица (КОЕ-Э). Из нее развивается проэритробласт, который является самой первой клеткой предшественницей, которая самая первая находится в костном мозге. Через 5 делений проэритробласт теряет ядро и уже сам «плавает» в крови. Эритроцит живет около 120 дней.

Отработанные эритроциты редуцируются. При этом процесс равного разрушения и образования новых клеток должен строго контролироваться. Если у организма повышается нужда в эритроцитах, то их выработка ускоряется и наоборот.

В костном мозге может разрушаться часть эритроцитов. Нормальный уровень гемоглобина поддерживается в организме за счет гормонов и прочих веществ, оказывающих влияние на эритропоэз. Если вдруг клетка не завершила свое преобразование, процесс появления красных кровяных клеток считается неэффективным.

Производство лейкоцитов

Начальной единицей является миелобласт, после созревания которого происходят некоторые изменения. Ядро его уменьшается и миелобласт становится промиелоцитом. Такая клетка имеет маленькое ядро и уплотнения хроматина по периферии. Промиелоцит переходит в миелоцит.

Схема кроветворения

Миелоциты по предназначению делятся на базофильные, эозинофильные и нейтрофильные. Со временем они становятся метамиелоцитами, которые переходят в гранулоциты палочкоядерного и сегментоядерного типа.

Палочкоядерные имеют ядро в виде колбаски. Ядро сужается и получается сегментоядерный гранулоцит. Все формы до миелоцита в норме можно обнаружить только в костном мозге, а палочки и сегменты находятся как в нем, так и в крови.

Стоит затронуть такие клетки, как моноциты. Начальной единицей является монобласт, который переходит в промоноцит, а затем и в моноцит. Зачем нужны моноциты полностью не ясно. Есть предположение наличия некой связи с гранулоцитами на генетическом уровне.

Клетки-макрофаги получаются при дальнейшей дифференцировке с образованием неровностей на их поверхности. Макрофаги связаны со многими клетками и имеют огромное количество функций:

  • удаляют продукты распада
  • являются звеном иммунитета
  • необходимы в свертывании крови
  • участвуют в обмене веществ
  • стимулируют некоторые процессы

И конечно же, стоит упомянуть о лимфоцитах. В ходе своего преобразования лимфоциты проходят стадию клеток предшественниц Т и В лимфоцитов. Они заполняют селезенку, лимфоузлы. Такие клетки проходят дифференцировку от предшественников Т и В лимфоцитов до зрелых клеток.
Регуляция этого процесса контролируется цитокинами.

Производство тромбоцитов

Начальным этапом производства тромбоцитов является стволовая клетка гемопоэтического типа. Основными этапами ее преобразований является:

  • перевод клетки в нужное русло дифференцировки
  • деление клеток путем митоза
  • увеличение плоидности клетки
  • рост цитоплазмы
  • выход тромбоцитов в русло

На ранних стадиях тромбоцитопоэза основным регулятором служит тромбопоэтин. Сами тромбоциты активно участвуют в свертывании крови и регулируют спазм сосудов .

Вот так, пройдя множество преобразований, стволовая клетка становится одной из клеток кровяного русла.

Назначение схемы гемопоэза

Схема кроветворения

Все выше сказанное можно объединить в единую схему.

Назначение такой схемы трудно переоценить. Она имеет огромное количество плюсов и несомненную значимость.

  • При помощи такой схемы можно отчетливо отследить все этапы образования интересующей клетки.
  • Если нужная клетка не образовалась, можно отследить на каком этапе произошла ошибка и цепочка действий прервалась.
  • Найдя ошибку в системе, врач может воздействовать на интересующее звено кроветворения, чтобы его простимулировать.

Всем известно, что многие онкологические заболевания. особенно кроветворной системы, характеризуются присутствием в крови незрелых форм клеток. Исходя из этого, применив подобную схему, можно отчетливо понять суть процесса, правильно поставить диагноз и своевременно начать лечение.

Таким образом, схема гемопоэза ясно представляет структуру периферической крови по компонентам, что также немаловажно в диагностике патологических процессов.

Что будет, если гемопоэз нарушится

К сожалению, встречаются заболевания, при которых нарушается одно или несколько звеньев производства крови. В зависимости от того, на каком уровне это произошло, тяжесть заболевания и его проявления будут варьировать.

Нарушение производства эритроцитов

Такое состояние возникает, если эритропоэз остановился до полного образования эритроцита. Основными проявлениями проблемы будут:

  • снижение уровня гемоглобина в крови
  • появление патологических форм гемоглобина
  • повышенное разрушение недозрелых форм леток и, как
  • следствие, появление желтухи

Нарушение производства лейкоцитов

Обычно такое нарушение связано с повышенной выработкой миелобластов или лимфоцитов, при этом развивается состояние знакомое всем как лейкоз. Клинически лейкоз появляется снижением общего иммунитета, присоединением множества инфекций и ненормальной реакцией организма на обычные процессы.

Лечить лейкоз достаточно трудно, зачастую приходится прибегать к химиотерапии.

Нарушение производства тромбоцитов

Изменения в этом звене гемопоэза очень опасны, так как быстрее предыдущих ведут к гибели. Вся причина в том, что несовершенные тромбоциты не могут адекватно выполнить адгезивную функцию. Следовательно, даже малейшие повреждения будут сопровождаться массивными кровотечениями .

Получается, что все этапы и звенья кроветворения равны между собой, нельзя выделить какой-то главный этап. Изменения в любом из них губительны для организма.

В заключении хочется сказать, что тонкие механизмы гемопоэза, практически не подвластны человеческому воздействию. Поэтому возникшие в них ошибки исправить бывает очень трудно.

Сен 29, 2016 Виолетта Лекарь

Внимание, горящее ПРЕДЛОЖЕНИЕ!

КРОВЕТВОРЕНИЕ (син. гемопоэз ) — процесс, заключающийся в серии клеточных дифференцировок, которые приводят к образованию зрелых клеток периферической крови. В значительной части этот процесс был изучен у зародышей, в организме взрослого его можно проследить при восстановлении К. после тяжелых цитостатических воздействий.

В изучении К. большую роль сыграли работы А. А. Максимова, А. Н. Крюкова, А. Д. Тимофеевского, Н. Г. Хлопина, А. А. Заварзина, Паппенгейма (A. Pappenheim). Важнейшее значение в исследовании процессов клеточных дифференцировок имело применение специальных методов окраски клеток в мазках, разработанных П. Эрлихом и Д. Л. Романовским в 70-х гг. 19 в.

Наиболее распространенной в СССР была схема кроветворения И. А. Кассирского и Г. А. Алексеева (1967), к-рая подвела итог морфол, этапа изучения этого процесса. Она отражала гипотезу А. А. Максимова об унитарном происхождении всех клеток крови — из одного типа клеток (гемоцитобластов). При этом допускалось, что тесное соседство стромальных элементов (фибробластов), образующих ячейки костного мозга, и самих кроветворных клеток служит отражением их гистогенетического родства. Это предположение оказалось ошибочным. Наряду с унитарным представлением о К. имела место и дуалистическая гипотеза, допускавшая раздельное происхождение лимфоцитов и всех остальных элементов крови. Полифилетическая теория К. представлявшая происхождение многих рядов кроветворных клеток независимо друг от друга, имеет лишь исторический интерес.

Длительное сосуществование различных гипотез о происхождении клеток крови объясняется тем, что визуально проследить самые начальные стадии К. было невозможно из-за морф, сходства родоначальных клеток всех ростков К. а функц, методов не существовало.

В 1961 г. Тилл и Мак-Каллок (J. Е. Till, E. A. McCulloch) предложили метод, основанный на том, что после введения смертельно облученным мышам донорского костного мозга в их селезенках развиваются макроскопически видимые очаги (колонии) кроветворных клеток. С помощью метода хромосомных маркеров (стабильно измененных после облучения хромосом) Беккером (А. j. Becker, 1963) было показано, что каждая такая колония представляет собой клон — потомство одной клетки, названной колониеобразующей единицей в селезенке (КОЕс). При образовании колонии одна КОЕс продуцирует несколько миллионов дифференцированных клеток-потомков, одновременно поддерживая собственную линию колониеобразующих клеток, которые при ретрансплантации следующей облученной мыши снова дают кроветворные колонии в ее селезенке. Т. о. было продемонстрировано существование во взрослом организме специальных клеток, обладающих способностью к длительному самоподдержанию и дифференцировке в зрелые клетки крови. Новые клональные методы исследования позволили изучить потомство отдельной колониеобразующей клетки и непосредственно выявить кроветворные клетки — предшественницы разных классов, оценить их дифференцировочные и пролиферативные возможности (см. Культуры клеток и тканей ).

Схема кроветворения

Схема кроветворения. Клетки первого, второго и третьего верхних рядов взяты в рамки и даны в двух морфологически разных вариантах, в которых они способны находиться: лимфоцитоподобном (меньшего размера) и бластном (большего размера). Стрелки здесь указывают на возможность перехода клеток одного варианта в клетки другого варианта.

Лимфоцитарные колонии в селезенках облученных мышей после введения костного мозга не образуются, поэтому вопрос о происхождении лимфоцитов из общей полипотентной клетки — предшественницы как кроветворных, так и лимфоидных клеток — долгое время был предметом дискуссий. Используя метод селезеночных колоний в сочетании с методом радиационных маркеров, удалось показать, что лимфоциты несут те же маркеры, что и кроветворные клетки селезеночных колоний. Т. о. экспериментально было подтверждено наличие полипотентной клетки, общей для всех ростков К. в т. ч. и для лимфоцитов. Эти клетки, названные стволовыми, оказались способными и к самоподдержанию, и к дифференцировкам по всем рядам К. (цветн. табл.).

Концентрация стволовых клеток в кроветворных органах (см.) сравнительно невелика — в костном мозге мышей их ок. 0,5%. Морфологически они неотличимы от лимфоцитов. Дифференцировка исходной полипотентной стволовой клетки в первые морфологически распознаваемые клетки того или иного ряда представляет собой многостадийный процесс, ведущий к значительному расширению численности каждого из рядов. На этом пути происходит постепенное ограничение способности клеток-предшественниц (этим термином обозначают всю совокупность морфологически сходных клеток верхних трех рядов схемы К.) к различным дифференцировкам и постепенное снижение их способности к самоподдержанию. Стволовые полипотентные клетки обладают очень высокой способностью к самоподдержанию — число проделываемых каждой клеткой митозов может достигать 100; большая их часть пребывает в состоянии покоя, одновременно в цикле находится ок. 20% клеток.

После того как было доказано существование стволовых клеток с помощью метода культуры костного мозга для гранулоцитарно-моноцитарного ростка, а затем и для эритроцитарного и мегакариоцитарного, были обнаружены поэтиночувствительные клетки-предшественницы. Разработка методов культивирования этих ростков позволила оценить и морфол. и функц, особенности соответствующих поэтиночувствительных клеток. Абсолютное большинство их находится в стадии активной пролиферации. Морфологически поэтиночувствительные клетки, так же как и стволовые, неотличимы от лимфоцитов. Принципиальной особенностью поэтиночувствительного ряда клеток является их способность отвечать на гуморальные регулирующие воздействия. Именно на уровне этих клеток реализуются механизмы количественной регуляции К. к-рое отвечает конкретным потребностям организма в клетках того или иного ряда. В агаровой культуре костного мозга происходит последовательное развитие гранулоцитов, сменяемых затем моноцитами, превращающимися в макрофаги. Моноциты появляются на смену гранулоцитам, нуждаясь, как и последние, в так наз. колониестимулирующем факторе — предполагаемом специфическом гормональном регуляторе.

Колонии фибробластов никогда не дают роста кроветворных клеток, и никогда не происходит трансформации кроветворных клеток в фибробласты.

Существенным дополнением к представлению о лимфоцитопоэзе явилось открытие двух типов лимфоцитов — В- и Т-клеток, первые из которых ответственны за гуморальный иммунитет, т. е. выработку антител, а вторые осуществляют клеточный иммунитет, участвуют в реакции отторжения чужеродной ткани (см. Иммунокомпетентные клетки ). Оказалось, что В-лимфоциты в результате антигенной стимуляции могут из морфологически зрелой клетки превращаться в бластную форму и дальше дифференцироваться в клетки плазматического ряда. Под влиянием антигенной стимуляции трансформируются в бластную форму и Т-лимфоциты. Т. о. ранее казавшийся единым лимф, ряд представлен тремя рядами клеток: В-, Т-лимфоцитами и тесно связанными с В-лимфоцитами плазматическими клетками. Кроме того, привычное представление о бластной клетке (бластом называется клетка, имеющая обычно неширокую цитоплазму, нежноструктурное ядро, к-рое отличается равномерностью калибра и окраски хроматиновых нитей, часто содержит нуклеолы) как о родоначальнице ряда оказалось не совсем точным для лимфоцитов: зрелые лимфоциты при воздействии на них специфических антигенов вновь способны трансформироваться в бластные клетки. Этот феномен получил название реакции бластотрансформации лимфоцитов (см.). Трансформированные под действием антигенов лимфоциты называют иммунобластами. В схему К. пришлось ввести стрелки, указывающие на возможность перехода морфологически зрелых лимфоцитов в соответствующие бластные формы.

Между стволовыми и поэтиночувствительными клетками находятся клетки-предшественницы миелопоэза и лимфоцитопоэза. Существование этих клеток строго не доказано, однако обнаружен целый ряд лейкозов, прежде всего хрон, миелолейкоз, а также сублейкемический миелоз, эритромиелоз, при которых единственным источником опухолевой пролиферации могут быть клетки более молодые (менее дифференцированные), чем поэтиночувствительные, но более зрелые, чем стволовые. Показано также существование лимф, лейкозов, представленных и В- и Т-лимфоцитами одновременно, т. е. возникших из их общего предшественника.

В схеме К. стволовая клетка и клетки 2-го и 3-го рядов взяты в рамки и даны в двух морфологически разных вариантах, в которых они способны находиться: лимфоцитоподобном и бластном.

На уровне поэтиночувствительных клеток происходит дальнейшее ограничение дифференцировочных возможностей клеток. На этой и следующих морфологически распознаваемых стадиях дифференцировки подавляющее большинство клеток находится в состоянии пролиферации.

Последними клетками, способными к делению, среди гранулоцитов являются миелоциты, а среди эритрокариоцитов — полихроматофильные нормоциты. В процессе дифференцировки морфологически распознаваемые клетки эритроцитарного ряда проделывают 5—6 митозов; гранулоцитарные клетки — 4 митоза; при моноцитопоэзе от монобласта до макрофага проходит 7—8 митозов. В мегакариоцитопоэзе выделяют несколько морфологически различимых предшественников, которые начиная с мегакариобласта претерпевают 4—5 эндомитозов (деления ядра без деления цитоплазмы).

С помощью метода клонирования и анализа хромосомных маркеров было показано, что фагоцитирующие клетки, в частности купферовские клетки печени и все другие тканевые макрофаги, объединенные в систему фагоцитирующих мононуклеаров, относятся к производным кроветворных клеток и являются потомством моноцитов, а не ретикулярных клеток и не эндотелия. Клетки этой системы не имеют гистогенетической общности ни с ретикулярными клетками, ни с эндотелиальными. Основные функц, характеристики, присущие входящим в эту систему клеткам,— способность к фагоцитозу, пиноцитозу, прочному прилипанию к стеклу. По мере дифференцировки в клетках этого ряда появляются рецепторы для иммуноглобулинов и комплемента, благодаря чему клетки приобретают способность к активному фагоцитозу (см.).

В эритроцитопоэзе (эритропоэзе) самой молодой клеткой является эритробласт (ее называют также проэритробластом), который имеет бластную структуру и обычно круглое ядро. Цитоплазма при окраске темносиняя, располагается узким ободком, часто дает своеобразные выросты. В отношении клеток эритрокариоцитарного ряда нет единой номенклатуры. Одни называют их нормобластами, другие эритробластами. Поскольку для других рядов термин «бласт» применяется лишь для клеток—родоначальниц того или иного ростка (отсюда и название «бласт» — росток), все клетки, являющиеся потомством эритробласта, должны иметь в названии окончание «цит». Поэтому термин «нормобласты» был заменен на «нормоциты».

За эритробластом появляется пронормоцит, который отличается от эритробласта более грубым строением ядра, хотя оно и сохраняет правильную структуру хроматиновых нитей. Диаметр ядра меньше, чем у эритробласта, ободок цитоплазмы шире, и становится видна перинуклеарная зона просветления. При изучении миелограммы (см.) пронормоцит легко спутать с эритробластом. В связи с трудностью разделения этих клеток некоторые авторы предлагают в практической гематологии их вообще не дифференцировать.

Далее располагается базофильный нормоцит, у к-рого грубоглыбчатое ядро имеет колесовидную структуру, цитоплазма окрашена в темно-синий цвет.

Следующий — полихроматофильный — нормоцит имеет еще более плотную структуру ядра; цитоплазма занимает большую часть клетки и имеет базофильную окраску за счет структур, содержащих РНК, и оксифильную за счет появления уже достаточного количества гемоглобина.

Ортохромный, или оксифильный, нормоцит имеет маленькое плотное ядро (как вишневая косточка), оксифильную или с базофильным оттенком цитоплазму. В норме оксифильных нормоцитов сравнительно мало, т. к. выталкивая на этой стадии ядро, клетка превращается в эритроцит, но в «новорожденном» эритроците всегда сохраняются остатки базофилии за счет небольшого количества РНК, к-рая исчезает в течение первых суток. Такой эритроцит с остатками базофилии называется полихроматофильным эритроцитом. При применении специальной прижизненной окраски базофильное вещество выявляется в виде сеточки; тогда эту клетку называют ретикулоцитом.

Зрелый эритроцит имеет форму двояковогнутого диска, поэтому в мазке крови он имеет центральное просветление. По мере старения форма эритроцита постепенно приближается к сферической (см. Эритроциты ).

Самой молодой клеткой тромбоцитопоэза (тромбопоэза) является мегакариобласт — одноядерная небольшая клетка с крупным бластным ядром, хроматинные нити к-рого толще и грубее, чем у эритробласта; в ядре могут быть видны 1 — 2 темно-синие нуклеолы. Цитоплазма беззернистая, темно-синего цвета, отростчатая, узким ободком окружает ядро. Промегакариоцит возникает в результате нескольких эндомитозов. Ядро полиморфное с грубым строением хроматина; цитоплазма темно-синяя, беззернистая.

Зрелый мегакариоцит отличается от промегакариоцита большим ядром. Цитоплазма имеет сине-розовую окраску, содержит азурофильную красноватую зернистость. Внутри мегакариоцита формируются тромбоциты (см.). В мазке можно видеть и распадающиеся Мегакариоциты, окруженные кучками тромбоцитов. При тромбоцитолитических состояниях отшнуровка тромбоцитов может происходить и на стадии промегакариоцита, тромбоциты при этом лишены азурофильной субстанции, но они активно участвуют в гемостазе.

Лейкоцитопоэз (лейкопоэз) включает гранулоцитопоэз (гранулопоэз), лимфоцитопоэз (лимфопоэз) и моноцитопоэз (монопоэз).

В гранулоцитарном ряду миелобласт является первой морфологически различимой клеткой. Он имеет нежноструктурное ядро, единичные нуклеолы. Форма ядра круглая, размеры чуть меньше, чем у эритробласта. Миелобласт отличается от недифференцируемых бластов из класса клеток-предшественниц наличием зернистости в цитоплазме; форма клетки чаще круглая, ровная.

Следующей стадией созревания гранулоцитов является промиелоцит — нейтрофильный, эозинофильный и базофильный. Круглое или бобовидное ядро промиелоцита больше ядра миелобласта почти вдвое, хотя эта клетка и не является полиплоидной; оно часто располагается эксцентрично, и в нем можно видеть остатки нуклеол. Структура хроматина уже утрачивает нежное нитчатое строение бластных клеток, хотя и не имеет грубоглыбчатого строения. Площадь цитоплазмы примерно равна площади ядра; цитоплазма обильно насыщена зернистостью, имеющей характерные для каждого ряда особенности. Для нейтрофильного ряда промиелоцит является самой зернистой клеткой. Его зернистость полиморфная — крупная и мелкая, окрашивается и кислыми и основными красителями. В промиелоците зернистость часто располагается и на ядре. Зернистость эозинофильного промиелоцита, имея характерную для эозинофилов однотипность зерен (типа «кетовой икры»), вместе с тем окрашивается как кислыми, так и основными красителями. Базофильный промиелоцит имеет крупную полиморфную базофильную зернистость.

Поскольку переход от промиелоцита к следующей стадии созревания клеток — миелоциту — не является резким, появилась промежуточная форма, названная «материнский миелоцит», к-рая по всем признакам соответствует описанному промиелоциту, но отличается от него более грубым ядром. В практике эта форма не учитывается, в миелограмму она не вошла.

Миелоцит представляет собой клетку с круглым или овальным, часто эксцентрически расположенным ядром, потерявшим какие бы то ни было признаки бласта. Цитоплазма окрашена в серовато-синеватый тон, ее зернистость у нейтрофильного миелоцита мельче, чем у промиелоцита. Относительная площадь цитоплазмы нарастает. Эозинофильный миелоцит имеет характерную однотипную оранжево-красную зернистость, базофильный миелоцит — полиморфную крупную базофильную зернистость.

Метамиелоцит характеризуется бобовидным крупноглыбчатым ядром, расположенным обычно эксцентрично. Площадь его цитоплазмы больше площади ядра и цитоплазма содержит ту же зернистость, что и миелоцит, но в нейтрофильных метамиелоцитах она более скудная, чем в миелоцитах.

Моноцитарный ряд представлен довольно простыми стадиями перехода. Монобласт в норме трудно отличить от миелобласта или недифференцируемого бласта, но при монобластном остром или моноцитарном хрон, лейкозе эти клетки легко выявить с помощью гистохим, окраски. Промоноцит имеет ядро промиелоцита, но лишен зернистости (см. Лейкоциты ).

В лимфоцитарном ряду лимфобласт (большой лимфоцит) имеет все черты недифференцируемого бласта, но характеризуется иногда единичными крупными нуклеолами. Обнаружение в мазке из лимф, узла или селезенки бласта без зернистости позволяет относить его к лимфобластам. Попытка дифференцировать лимфобласт, монобласт и недифференцируемый бласт по величине и форме ядра, по ширине ободка цитоплазмы не имеет успеха, т. к. лимфобласт под влиянием антигенного стимулирования может претерпевать самые различные изменения.

Пролимфоцит имеет относительно гомогенную структуру ядра, нередко остатки нуклеол, но в нем нет характерной для зрелого лимфоцита крупной глыбчатости хроматина (см. Лимфоциты ).

Плазмобласт имеет бластное ядро, беззернистую фиолетово-синюю цитоплазму. Проплазмоцит по сравнению с плазмоцитом обладает более плотным ядром, расположенным обычно эксцентрично, относительно большей цитоплазмой сине-фиолетового цвета. Плазмоцит характеризуется колесовидным плотным ядром, лежащим эксцентрично; цитоплазма — сине-фиолетовая, иногда с несколькими азурофильными красноватыми гранулами. И в норме и в патологии он может быть многоядерным (см. Плазматические клетки ).

Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков.

Кроветворение в антенатальном периоде

Кроветворение в антенатальном периоде впервые обнаруживается у 19-дневного эмбриона в кровяных островках желточного мешка, в стебле и хорионе. К 22-му дню первые кровяные клетки проникают в мезодермальную ткань эмбриона, в сердце, аорту, артерии. На 6-й нед. снижается активность К. в желточном мешке. Полностью первый (мезобластический) период гемопоэза, преимущественно эритроцитопоэза, заканчивается к началу 4-го мес. жизни эмбриона. Примитивные кроветворные клетки желточного мешка накапливают гемоглобин и превращаются в примитивные эритробласты, названные П. Эрлихом мегалобластами.

Второй (печеночный) период К. начинается после б нед. и достигает максимума к 5-му мес. К. этого периода преимущественно эритроидное, хотя на 9-й нед. в печени уже созревают первые нейтрофилы. Печеночный период эритроцитопоэза характеризуется исчезновением мегалобластов; при этом эритрокариоциты имеют нормальные размеры. На 3-м мес. эмбриональной жизни в эритроцитопоэз включается селезенка, но у человека ее роль в пренатальном К. ограничена.

На 4—5-м мес. начинается третий (костномозговой) период К. Миелоидный эритроцитопоэз плода — эритробластический и, как и лейкоцитопоэз, мало отличается от эритроцитопоэза взрослого.

Общей закономерностью эмбрионального эритроцитопоэза является постепенное уменьшение размеров эритроцитов и увеличение их числа. Соответственно различным периодам К. (мезобластическому, печеночному и костномозговому) существует три разных типа гемоглобина: эмбриональный, фетальный и гемоглобин взрослого. В основном переход от фетального гемоглобина к гемоглобину взрослого начинается на 3-й нед. жизни плода и заканчивается через 6 мес. после рождения.

В первые дни у новорожденных наблюдается полиглобулия и нейтрофильный лейкоцитоз. Затем активность эритроцитопоэза снижается. Нормализуется он в возрасте 2—3 мес. Нейтрофилез первых дней жизни сменяется лимфоцитозом; только к 5 годам в лейкоцитарной формуле начинают преобладать нейтрофилы.

Регуляция кроветворения

Регуляция кроветворения осуществляется гл. обр. гуморальным путем. Причем для каждого из рядов К. видимо, этот путь является самостоятельным. В отношении эритроцитопоэза известно, что дифференцировка поэтиночувствительных клеток в эритробласты (с последующими их дифференцировками до зрелых эритроцитов) невозможна без эритропоэтина (см.). Стимулятором для выработки эритропоэтина является падение напряжения кислорода в тканях. Для дифференцировки гранулоцитов в культуре необходимо присутствие колониестимулирующего фактора, который, как и эритропоэтин, относится к альфа2-глобулинам.

Кроме специфических гормонов типа эритропоэтина, на К. действуют и другие гормоны, напр, андрогены. Они стимулируют эритроцитопоэз, мобилизуя эндогенный эритропоэтин. Медиаторы (адреналин, ацетилхолин) влияют на кроветворную систему, не только вызывая перераспределение форменных элементов в крови, но и путем прямого воздействия па стволовые клетки (у них обнаружены адрено- и холинорецепторы).

Мало разработан вопрос о нервной регуляции К. хотя обильная иннервация кроветворных тканей не может не иметь биол, значения. Нервное напряжение, эмоциональные перегрузки ведут к развитию кратковременного нейтрофильного лейкоцитоза без существенного омоложения состава лейкоцитов. Несколько повышает уровень лейкоцитов в крови прием пищи. Аналогичный эффект вызывается введением адреналина. В основе этой реакции лежит преимущественно мобилизация сосудистого гранулоцитарного резерва. При этом лейкоцитоз развивается в течение нескольких десятков минут. Лейкоцитоз с палочкоядерным сдвигом вызывается введением пирогенала и глюкокортикоидных стероидных гормонов, достигая максимума через 2—б час. и обусловлен выходом гранулоцитов из костномозгового резерва. Содержание гранулоцитов в костномозговом резерве превышает их количество в кровяном русле в 30—50 раз.

Гуморальная регуляция кроветворения осуществляется преимущественно на уровне поэтиночувствительных клеток. В опытах с неравномерным облучением было показано, что восстановление кроветворных клеток в облученной конечности происходит независимо от состава крови и состояния необлученных участков костного мозга. Пересадка костного мозга под капсулу мышиной почки показала, что объем костного мозга, развивающегося из трансплантата, определяется количеством пересаженных стромальных клеток. Следовательно, они и определяют пределы размножения стволовых клеток, из которых затем развивается костный мозг в почке мыши-реципиента. Работами А. Я. Фриденштейна и др. (1968, 1970) показана специфичность стромальных клеток различных кроветворных органов: стромальные клетки селезенки определяют дифференцировку стволовых клеток в направлении лимфоцитопоэза, костномозговые стромальные клетки — в направлении миелопоэза. Вместе с тем, по-видимому, существуют мощные стимуляторы, включение которых происходит при необычных состояниях (напр. резкая анемия), что приводит к развитию в селезенке очагов несвойственного ей К. с преимущественным размножением эритрокариоцитов. Чаще это наблюдается в детском возрасте. Такие очаги К. называемые экстрамедуллярными, содержат наряду с эритрокариоцитами небольшой процент других элементов костного мозга — миелоцитов, промиелоцитов, мегакариоцитов. При острой массивной или при длительной повышенной потере клеток К. может идти по дополнительным путям в каждом из рядов. По-видимому, существуют возможности к появлению особых клеток-предшественниц 3-го ряда схемы К. которые и дают начало таким шунтовым путям К. обеспечивающим быструю продукцию большого количества клеток. Это хорошо прослежено при эритроцитопоэзе, но, вероятно, существует и в других рядах.

Включение стволовых клеток в дифференцировку является скорее всего случайным процессом, вероятность к-рого при стабильном К. составляет примерно 50%. Регуляция числа стволовых клеток носит не общий, а локальный характер и обеспечивается механизмами, функционирующими в каждом конкретном участке кроветворного микроокружения. Значительно менее ясно, регулируется ли направление дифференцировки стволовых кроветворных клеток. На основании целого ряда экспериментальных данных высказываются предположения о том, что вероятность дифференцировки стволовых клеток в направлении эритроцитопоэза, гранулоцитопоэза и т. д. всегда постоянна и не зависит от внешних условий.

Фактов, свидетельствующих о существовании специализированной системы, регулирующей К. нет. Поддержание определенного количества зрелых клеток в крови осуществляется многоступенчатой передачей нейрогуморальных сигналов. Сигнал поступает к клеточному резерву или клеточному депо, из к-рого эритроциты мобилизуются очень быстро при острой кровопотере. Затем стимулируется продукция соответствующих клеток на уровне поэтиночувствительных элементов путем увеличения их численности сначала без дифференцировки («горизонтальные митозы»), а затем с дифференцировкой. В результате создается категория зрелых клеток.

Патология кроветворения

Патология кроветворения может проявляться нарушением созревания клеток, выходом в кровь незрелых клеточных элементов, появлением в периферической крови несвойственных данной возрастной категории клеточных элементов. Бактериальная инфекция, обширные тканевые распады (распадающиеся опухоли, флегмоны и т. п.), эндотоксинемия сопровождаются выраженным нейтрофильным лейкоцитозом с увеличением процента палочкоядерных нейтрофилов, нередким появлением в крови метамиелоцитов, миелоцитов, промиелоцитов. Четкой зависимости степени лейкоцитоза от тяжести повреждения организма нет. Лейкоцитоз зависит, с одной стороны, от объема костномозгового и сосудистого гранулоцитарного резерва и от активности костномозговой продукции, с другой — от интенсивности потребления гранулоцитов в очаге воспаления. Противоположное лейкоцитозу (см.) состояние — лейкопения (см.), обусловленное прежде всего гранулоцитопенией, может быть связано с подавлением продукции гранулоцитов в результате воздействия противогранулоцитарных антител, аплазии костного мозга иммунной природы, напр, характеризующейся одновременным угнетением гранулоцитарного, эритроцитарного и мегакариоцитарного ростков, или аплазии неизвестного происхождения (собственно апластическая анемия); в других случаях гранулоцитопения и лейкопения могут быть обусловлены повышенным распадом гранулоцитов в увеличенной селезенке (напр. при хрон, гепатите, циррозе печени). В связи с существованием костномозгового резерва падение количества гранулоцитов в крови за счет их повышенного использования встречается редко (напр. при обширных сливных пневмониях). Лейкопения является частым признаком опухолевого замещения костного мозга при милиарных метастазах, при острых лейкозах и изредка наблюдается в начале хрон, лимфолейкоза. При лейкозах (см.) количество лейкоцитов в крови может и увеличиваться; постоянно это бывает при хрон, лейкозах. При острых лейкозах содержание лейкоцитов в крови может быть различным: в начале процесса чаще отмечается лейкопения, затем по мере выхода бластных опухолевых клеток в кровь может возникнуть лейкоцитоз.

Вирусная инфекция, антигенные воздействия ведут к усиленной продукции специфических лимфоцитарных клонов, повышению уровня лимфоцитов в крови. Уменьшение количества тромбоцитов (см. Тромбоцитопения ) наблюдается при появлении аутоантител к тромбоцитам (реже к мегакариоцитам), при повышенном разрушении их увеличенной селезенкой. Снижение содержания тромбоцитов возможно в результате кровопотерь, при возникновении обширных гематом, внутрисосудистом диссеминированном свертывании (тромбоцитопения потребления). Увеличение содержания тромбоцитов (см. Тромбоцитемия ) наблюдается при некоторых хрон, лейкозах (хрон, миелолейкозе, сублейкемическом миелозе, эритремии), нередко при раке. Иногда при раке почки раковые клетки продуцируют эритропоэтин и, возможно, тромбоцитопоэтин (см.), что сопровождается резким повышением количества эритроцитов и тромбоцитов.

Содержание эритроцитов в крови определяется соотношением их распада и продукции, кровопотерями, обеспеченностью организма железом. Дефицит железа приводит к снижению уровня гемоглобина в эритроцитах при нормальном числе их в крови — низкий цветной показатель. Напротив, дефицит витамина В12 сопровождается нарушением клеточного деления в результате нарушений синтеза ДНК; при этом эритроциты уродливы, их мало, но гемоглобина в них больше, чем в норме,— повышенный цветной показатель (см. Гиперхромазия, гипохромазия ).

В отдельных случаях возможны и реакции нескольких ростков на неспецифические стимулирующие воздействия. Напр. развитие в организме раковой опухоли может приводить к увеличению в крови содержания как гранулоцитов, так и тромбоцитов. Аналогичная картина изредка наблюдается при сепсисе.

К. претерпевает глубокие изменения при остром лучевом воздействии. Эти изменения в основных своих проявлениях соответствуют изменениям, развивающимся нередко при химиотерапии опухолей. Под влиянием ионизирующей радиации гибнут делящиеся клетки костного мозга, лимф, узлов. Зрелые гранулоциты, эритроциты сохраняют жизнеспособность даже при заведомо смертельных дозах облучения. С другой стороны, зрелые лимфоциты относятся к радиочувствительным клеткам. Этим объясняется быстрое уменьшение их количества в периферической крови в первые же часы после облучения. Поскольку эритроциты в крови живут ок. 120 дней, анемия развивается через 1 — 1,5 мес. после облучения. К этому времени в тяжелых случаях начинается активное К. наблюдается повышение содержания ретикулоцитов, и анемия не достигает высокой степени.

В легких случаях восстановительный ретикулоцитоз развивается через 1,5 мес. после облучения, но анемия при этом также не бывает глубокой.

Одним из последствий облучения является гибель клеток костного мозга и развивающееся в дальнейшем уменьшение клеток в периферической крови. Для проявлений острого лучевого поражения специфической является формула «доза — эффект», характеризующая строгую зависимость первичных изменений от поглощенной дозы ионизирующей радиации. Повреждения костного мозга относятся к первичным изменениям, а возникающие вследствие угнетения костного мозга инфекции, геморрагии — к вторичным; их выраженность, да и само появление повреждения строго дозой не обусловлены. Условно считают, что тотальное облучение в дозе более 100 рад ведет к развитию острой лучевой болезни (см.). Меньшие дозы, хотя и приводят к существенной гибели костномозговых клеток, непосредственной опасности не представляют (лучевое повреждение без клин, проявлений). При облучении в дозе более 200 рад развивается лимфопения, агранулоцитоз, глубокая тромбоцитопения; анемии, как правило, не возникает. При меньших дозах отмечаются такие же нарушения, но в меньшей степени. Тотальное или близкое к нему облучение тела в дозах более 200 рад приводит к максимальному падению количества лейкоцитов, тромбоцитов и ретикулоцитов. Время наступления лейкопении также находится в строгой зависимости от дозы облучения. Здесь демонстрируется не только закономерность «доза — эффект», но и закономерность «доза — время эффекта», т. е. срок клинически обнаруживаемых повреждений при острой лучевой болезни определяется дозой облучения.

Схема кроветворения

Изменения количества лейкоцитов периферической крови человека в зависимости от дозы тотального облучения: по оси абсцисс — время после облучения (в сутках), по оси ординат — количество лейкоцитов (в тысячах в 1 мкл).

Закономерность изменения количества лейкоцитов в периферической крови зависит от дозы облучения. Эти изменения складываются из периода первоначального подъема в течение первых суток, периода первоначального снижения (5—14-е сут.), периода временного подъема, который наблюдается при дозах менее 500—600 рад и отсутствует при более высоких дозах облучения; периодов основного падения и окончательного восстановления, которые наблюдаются при дозах менее 600 рад (рис.). Та же закономерность наблюдается у тромбоцитов и ретикулоцитов.

Механизм колебаний количества лейкоцитов можно представить следующим образом. Первоначальный подъем носит, по-видимому, перераспределительный характер и продолжается обычно не более суток, его высота не связана с дозой облучения; в крови повышается только уровень гранулоцитов и не наблюдается омоложения их состава, что обусловлено мобилизацией сосудистого гранулоцитарного резерва.

После периода первоначального подъема начинается постепенное падение количества лейкоцитов, достигающего минимального значения в разные сроки в зависимости от дозы. Чем выше доза, тем раньше наступит момент максимального снижения. При дозах облучения свыше 600—1000 рад дальнейшего сокращения этого периода не наступает, хотя при уменьшении дозы он удлиняется и при дозе ок. 80—100 рад приходится примерно на 14-е сутки. Уровень падения количества лейкоцитов в период первоначального снижения находится в зависимости от дозы. Период первоначального снижения лейкоцитов следует объяснять расходованием костномозгового гра-нулоцитарного резерва (до 5—6-х сут.) и лишь отчасти дозреванием и дифференцировкой сохранившихся после облучения клеток (от момента облучения до конца первоначального снижения). Такой вывод возможен в связи с сохранением гранулоцитов в крови до 5—6-х сут. даже при таких высоких дозах (более 600—1000 рад), когда в костном мозге не остается клеток, способных к какой-либо дифференцировке, а сохраняются лишь высокорадиочувствительные неделящиеся зрелые гранулоциты. При дозах облучения костного мозга выше 600 рад практически все клетки имеют грубые повреждения хромосомного аппарата и погибают сразу после первого митоза в течение ближайших дней после облучения. При меньших дозах нек-рая часть костномозговых клеток сохраняет способность к делению и дифференцировке. Чем их больше, тем позже наступает окончание периода первоначального снижения количества лейкоцитов.

Тот факт, что к 5—6-м сут. резерв исчерпан, подтверждается и тем, что в эти дни в крови начинают появляться гигантские нейтрофилы — продукция клеток пролиферирующего пула, по-видимому, облученных в митозе. Гигантские нейтрофилы обнаруживают с 5-х по 9-е сут. после радиационного воздействия в крови лиц, тотально облученных в любой дозе (эти клетки находят в крови и после действия цитостатиков). При облучении в дозе более 600 рад выход гигантских нейтрофилов непосредственно предшествует наступлению агранулоцитоза.

Следующий этап — временный, так наз. абортивный, подъем количества лейкоцитов — отмечается при дозах облучения меньше 500—600 рад, а при более высоких дозах период первоначального падения непосредственно сменяется периодом основного снижения количества лейкоцитов. Происхождение абортивного подъема полностью не выяснено. Его продолжительность определяется дозой облучения: чем выше доза, тем он короче; при этом уровень лейкоцитов отчетливо не связан с дозой. Такой же абортивный подъем характерен для тромбоцитов и ретикулоцитов. При относительно небольших дозах — ок. 100—200 рад — абортивный подъем продолжается до 20—30-х сут. и сменяется периодом основного падения, а при дозах более 200 рад — агранулоцитозом, очень низким уровнем тромбоцитов и почти полным исчезновением ретикулоцитов. Окончательное восстановление кроветворения (после периода основного падения) наступает тем позже, чем меньше доза. Продолжительность периода основного падения при дозах от 200 до 600 рад примерно одинакова. Абортивный подъем обусловлен активизацией временного К. возможно исходящего из клетки-предшественницы миелопоэза, к-рое до того, как оно будет исчерпано, блокирует дифференцировку стволовых клеток, ответственных за окончательное восстановление К. в костном мозге. После периода основного падения в крови наступает нормализация клеточного уровня. В отдельных случаях это восстановление бывает не совсем полным и уровень лейкоцитов и тромбоцитов оказывается слегка сниженным.

Обнаружение периода временного подъема гранулоцитов, тромбоцитов и ретикулоцитов (но не лимфоцитов) с парадоксальным феноменом более раннего окончательного восстановления состава крови при больших дозах облучения (в пределах до 500 рад) позволило предположить наличие тормозящего влияния клеток-предшественниц миелопоэза на пролиферацию стволовых клеток.

Изменения в составе костного мозга при острой лучевой болезни изучены хуже, чем изменения в периферической крови. Костный мозг поражается облучением даже в малых дозах, не вызывающих острой лучевой болезни, хотя сразу после облучения не всегда удается выявить уменьшение количества клеток. Важную информацию о тяжести поражения костного мозга дает его цитол, характеристика. Уже в первые сутки после облучения значительно уменьшаются клетки красного ряда, процент миелобластов и промиелоцитов. Чем выше доза облучения, тем более глубоки эти изменения. В последующие недели постепенно нарастает опустошение костного мозга. Преимущественно снижается содержание гранулоцитов. Опустошение костного мозга в первые дни опережает возникновение агранулоцитоза в периферической крови. По данным костномозгового пунктата можно судить об исчезновении очагов гемопоэза; кроветворные клетки (при средней тяжести поражения) почти отсутствуют. Важные изменения клеточного состава костного мозга и периферической крови выявлены в результате применения хромосомного анализа. К концу первых суток отмечается появление митозов со структурными нарушениями хромосом — хромосомными аберрациями (см. Мутация ), число которых строго пропорционально дозе облучения: при дозе 100 рад количество аберрантных митозов составляет 20%, при дозе 500 рад — ок. 100%. Метод определения количества лейкоцитов в период первичного падения (на 7—8-й день), времени начала периода основного падения лейкоцитов лег в основу системы биол, дозиметрии при остром лучевом воздействии.

Существенные изменения происходят также в лимфоцитопоэзе. Начиная с первого дня количество лимфоцитов в крови снижается и отчетливо зависит от дозы облучения. Через 2 мес. после облучения их содержание в крови достигает нормального уровня. Исследование in vitro хромосом лимфоцитов периферической крови, стимулированных к митозу фитогемагглютинином (см.), обнаруживает дозовую зависимость. Лимфоциты в периферической крови находятся в межмитотическом периоде многие годы; поэтому даже спустя несколько лет после облучения можно по количеству аберрантных митозов в них установить факт повышенного облучения в прошлом и определить приблизительно дозу облучения. В костном мозге клетки с хромосомными аберрациями исчезают уже через 5—6 дней, т. к. в результате потери фрагментов хромосом во время митоза они становятся нежизнеспособными. При стимуляции костномозговых клеток фитогемагглютинином (ФГА) хромосомные повреждения в них обнаруживают через много лет после облучения. Эти клетки все годы после облучения находились в покое, и ответ на ФГА свидетельствует об их лимфоцитарной природе. Обычный анализ хромосомных аберраций клеток костного мозга производится без стимуляции ФГА.

Наблюдения за восстановлением состава крови после острого облучения показали, что скорость восстановления связана не только с дозой облучения, но и с вторичными проявлениями болезни (напр. с воспалительными процессами в коже, в кишечнике и др.). Поэтому при одной и той же дозе облучения время наступления агранулоцитоза у разных больных одинаково, а ликвидация агранулоцитоза зависит от степени поражения других органов.

При хрон, лучевой болезни, к-рая возникает в результате многократных повторных облучений организма на протяжении месяцев или лет в суммарной дозе более 200—300 рад, восстановление К. не имеет столь закономерной динамики; гибель клеток растянута на длительный срок, в течение к-рого происходят и процессы восстановления К. и процессы его дальнейшего повреждения. При этом цитопения может не развиться. Отдельные признаки астенического синдрома, свойственного хрон, лучевой болезни, могут появляться у некоторых больных и при облучении в суммарной дозе ок. 100 рад. В костном мозге при хрон, лучевой болезни обнаруживают отдельные небольшие скопления недифференцированных клеток, уменьшение количества клеток. В крови либо нет никаких изменений, либо отмечается умеренная непрогрессирующая цитопения — гранулоцитопения, тромбоцитопения,

Библиография: Бочков Н. П. и Пяткин Е.Н. Факторы, индуцирующие хромосомные аберрации у человека, в кн. Основы цитогенетики человека, под ред. A.А. Прокофьевой-Бельговской, с. 176, М. 1&69; Бриллиант М. Д. иВоробь-е в А. И. Изменения некоторых показателей периферической крови при тотальном облучении человека, Пробл, гематол, и перелив, крови, т. 17, № 1, с. 27, 1972, библиогр.; Заварзин А. А. Очерки эволюционной гистологии крови и соединительной ткани, в. 2, М.— Л. 1947, библиогр.; Кассирский И. А. и А л e к-с e e в Г. А. Клиническая гематология, М. 1&70; Максимов А. А. Основы гистологии, ч. 1—2, Л. 1&25; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, М. 1&76; Руководство по медицинским вопросам противорадиационной защиты, под ред. А. И. Бурназяна, с. 101, М. 1&75; ФриденштейнА. Я. и Л а л ы к и н а К. С. Индукция костной ткани и остеогенные клетки-предшественники, М. 1973, библиогр.; ХлопинН. Г. Общебиологические и экспериментальные основы гистологии, Л. 1&46; Чертков И. Л. и Воробьев А. И. Современная схема кроветворения, Пробл, гематол. и перелив, крови, т. 18, № 10, с. 3, 1973, библиогр.; Чертков И. Л. иФриденштейн А. Я. Клеточные основы кроветворения, М. 1977, библиогр.; Abramson S. Miller R. G. a. P h i 1 1 i p s R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid svstems, J. exp. Med. v. 145, p. 1565, 1&77; Becker A. J. M с С u 1- 1 o с h E. А. а. T i 1 1 J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells, Nature (Lond.), v. 197, p. 452, 1&63; Becker A. J. a. o. The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice, Blood, v. 26, p. 296, 1&65; Byron J. W. Manipulation of the cell cycle of the hemopoietic stem cell, Exp. Hematol. v. 3, p. 44, 1&75; E b b e S. Megakaryocytopoiesis and platelet turnover, Ser. Haematol. v. 1, p. 65, 1&68; Metcalf D. Hemopoietic colonies, in vitro cloning of normal and leukemic cells, B.—N. Y. 1&77; Metcalf D. a. Moore M. A. S. Haemopoietic cells, Amsterdam, 1&71; Till J. E. a. McCul-loch E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. v. 14, p. 213, 1961.

А. И. Воробьев, И. Л. Чертков.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *