Теорема котельникова

1.5. Теорема Котельникова

В 1933 году В.А. Котельниковым доказана теорема отсчетов [6, 32], имеющая важное значение в теории связи: непрерывный сигнал с ограниченным спектром можно точно восстановить (интерполировать) по его отсчетам , взятым через интервалы , где – верхняя частота спектра сигнала.

В соответствии с этой теоремой сигнал можно представить рядом Котельникова [6, 32]:

Таким образом, сигнал , можно абсолютно точно представить с помощью последовательности отсчетов , заданных в дискретных точках (рис.1.16).

образуют ортогональный базис в пространстве сигналов, характеризующихся ограниченным спектром:

Обычно для реальных сигналов можно указать диапазон частот, в пределах которого сосредоточена основная часть его энергии и которым определяется ширина спектра сигнала. В ряде случаев спектр сознательно сокращают. Это обусловлено тем, что аппаратура и линия связи должны иметь минимальную полосу частот. Сокращение спектра выполняют, исходя из допустимых искажений сигнала. Например, при телефонной связи хорошая разборчивость речи и узнаваемость абонента обеспечиваются при передаче сигналов в полосе частот . Увеличение приводит к неоправданному усложнению аппаратуры и повышению затрат. Для передачи телевизионного изображения при стандарте в 625 строк полоса частот, занимаемая сигналом, составляет около 6 МГц.

Из вышесказанного следует, что процессы с ограниченными спектрами могут служить адекватными математическими моделями многих реальных сигналов.

Функция вида называется функцией отсчетов (рис.1.17).

Она характеризуется следующими свойствами. Если , функция отсчетов имеет максимальное значение при , а в моменты времени ( ) она обращается в нуль; ширина главного лепестка функции отсчетов на нулевом уровне равна , поэтому минимальная длительность импульса, который может существовать на выходе линейной системы с полосой пропускания , равна ; функции отсчетов ортогональны на бесконечном интервале времени.

На основании теоремы Котельникова может быть предложен следующий способ дискретной передачи непрерывных сигналов:

Для передачи непрерывного сигнала по каналу связи с полосой пропускания определим мгновенные значения сигнала в дискретные моменты времени , ( ). После этого передадим эти значения по каналу связи каким — либо из возможных способов и восстановим на приемной стороне переданные отсчеты. Для преобразования потока импульсных отсчетов в непрерывную функцию пропустим их через идеальный ФНЧ с граничной частотой .

Можно показать, что энергия сигнала находится по формуле [6, 32]:

Теорема В.А.Котельникова

Лекция № 7.

Все реальные непрерывные сигналы являются плавными функциями времени. Скачки значений в них практически не наблюдаются. Поэтому такие сигналы можно представить последовательностью их значений, взятых с некоторым шагом по времени. Значение сигнала в фиксированный момент называется отсчетом .

На этом рисунке показан непрерывный сигнал и его отсчеты с различным шагом по времени. При малом шаге (рис. б) последовательность отсчетов достаточно точно описывает сигнал, а при большом шаге (рис. в) по отсчетам нельзя восстановит форму сигнала, так как пропущены его характерные экстремальные точки.

Как же часто следует брать отсчеты, чтобы по ним можно было полностью восстановить сигнал?

Ответ на этот вопрос дает теорема, доказанная в 1933 г. Советским ученым академиком В.А.Котельниковым . и названная его именем.

Согласно этой теореме любой непрерывный сигнал с конечным спектром (имеющим максимальное значение ) можно представить в виде дискретных отсчетов , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала: , передать его по линии связи, а затем восстановить исходный аналоговый сигнал .

Теорема Котельникова является основой для дискретизации непрерывных сигналов по времени, так как, во – первых, доказывает, что непрерывный сигнал можно заменить его дискретными значениями, во – вторых, дает правило вычисления шага дискретизации – . При таком шаге дискретизации ряд Котельникова дает точное временное представление сложного сигнала.

Физический смысл теоремы Котельникова.

Теорема Котельникова утверждает, что если требуется передать непрерывный сигнал с ограниченным спектром по каналу связи, то можно не передавать все его значения: достаточно лишь передать его мгновенные значения (отсчеты) через интервал . Поскольку сигнал полностью определяется этими значениями, то по ним он может быть восстановлен на приемном конце системы связи. Для этого достаточно соединить отсчеты плавной кривой. Это можно объяснить тем, что сигнал между отсчетами может изменяться только плавно, так как частоты выше дающие быстрые изменения, в сигнале отсутствуют. Ведь отсчеты берутся достаточно часто, и тем чаще, чем выше максимальная частота .

Практическое применение теоремы Котельникова.

Дискретизация сигнала осуществляется достаточно просто: периодически на короткое время через интервал ключом замыкается цепь от источника сигнала к нагрузке – получаем отсчеты . Далее эти отсчеты, пройдя через канал связи, поступают на вход идеального фильтра нижних частот (ФНЧ) с верхней частотой пропускания . На выходе фильтра получается исходный непрерывный сигнал .

Теорема котельникова

Структурная схема системы связи с использованием теоремы Котельникова.

На передающей стороне берутся отсчеты сигнала в моменты . Далее отсчеты любым способом передаются по каналу связи. Идеальный ФНЧ на приемном конце восстанавливает исходный сигнал .

Частота следования импульсов, называемая также частотой дискретизации . определяется по теореме Котельникова:

Например, частота дискретизации для речевого (телефонного) сигнала, имеющего максимальное значение спектра сигнала , будет равна . Согласно рекомендациям МККТТ и, соответственно, .

Теорема Котельникова в многоканальной электросвязи.

Возможность передачи вместо непрерывных сигналов последовательности импульсов (отсчетов) позволяет осуществить временное разделение каналов. Дело в том, что при импульсной передаче период следования импульсов обычно намного больше их длительности, то есть импульсы имеют большую скважность – при большой скважности между импульсами одного сигнала остается промежуток, на котором можно разместить импульсы от других сигналов. Этот способ и называется временным разделением . В настоящее время уже реализованы многоканальные системы передачи с временным разделением каналов на 12, 15, 30, 120, 480, 1920 речевых сигналов.

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

5.2. Теорема Котельникова

В 1933 г. В. А. Котельников доказал теорему, которая является одним из фундаментальных положений теоретической радиотехники. Эта теорема устанавливает возможность сколь угодно точного восстановления мгновенных значений сигнала с ограниченным спектром исходя из отсчетных значений (выборок), взятых через равные промежутки времени.

Построение ортонормированного базиса.

Как было показано, любые два сигнала с ограниченным спектром, принадлежащие семейству

являются ортогональными. Путем соответствующего выбора амплитудного множителя А можно добиться того, чтобы норма каждого из этих сигналов стала единичной. В результате будет построен ортонормированный базис, позволяющий разложить произвольный сигнал с ограниченным спектром в обобщенный ряд Фурье.

Достаточно рассмотреть лишь функцию

так как норма любого сигнала одинакова независимо от сдвига во времени. Поскольку

функции и будут ортонормированными, если

Бесконечная совокупность функций

образует базис Котельникова в линейном пространстве низкочастотных сигналов со спектрами, ограниченными сверху значением Отдельная функция называется отсчетной функцией.

Ряд Котельникова. Если — произвольный сигнал, спектральная плотность которого отлична от нуля лишь в полосе частот — , то его можно разложить в обобщенный ряд Фурье по базису Котельникова:

Коэффициентами рада служат, как известно, скалярные произведения разлагаемого сигнала и отсчетной функции:

Удобный способ вычисления этих коэффициентов заключается в применении обобщенной формулы Рэлея. Легко проверить, что отсчетная функция в пределах отрезка имеет спектральную плотность, равную . Это видно из сравнения формул (5.3) и (5.13). Тогда, если — спектр изучаемого сигнала то

Величина в фигурных скобках есть не что иное, как т. е. мгновенное значение сигнала отсчетной точке

откуда следует выражение ряда Котельникова:

Теорему Котельникова на основании последнего равенства принято формулировать так: произвольный сигнал, спектр которого не содержит частот выше Гц, может быть полностью восстановлен, если известны отсчетные значения этого сигнала, взятые через равные промежутки времени

Пример 5.1. Дан сигнал

Выбрав некоторый фиксированный интервал между отсчетами получаем возможность однозначно восстановить по отсчетам любой сигнал, спектр которого не содержит составляющих на частотах выше граничной частоты

Если то к рассматриваемому гармоническому сигналу применима теорема Котельникова; отсчетные значения (выборки) данного сигнала

В предельном случае, когда частота стремится к слева, т. е.

на каждый период гармонического сигнала должно приходиться ровно две выборки.

Если же условия теоремы Котельникова нарушаются и отсчеты во времени берутся недостаточно часто, то однозначное восстановлен ние исходного сигнала принципиально невозможно. Через отсчетные точки можно провести бесчисленное множество кривых, спектральные плотности которых отличны от нуля вне полосы —

Рис. 5.2. Аппаратурная реализация синтеза сигнала по ряду Котельникова

Аппаратурная реализация синтеза сигнала, представленного рядом Котельникова.

Важная особенность теоремы Котельникова состоит в ее конструктивном характере; она не только указывает на возможность разложения сигнала в соответствующий ряд но и определяет способ восстановления непрерывного сигнала, заданного своими отсчетными значениями (рис. 5.2).

Пусть имеется совокупность генераторов, создающих на выходных зажимах отсчетные функции . Генераторы являются управляемыми — амплитуда их сигналов пропорциональна отсчетным значениям Если объединить колебания на выходах, подав их на сумматор, то с выхода сумматора в соответствии с формулой (5.18) можно будет снимать мгновенные значения синтезируемого сигнала s(t).

Пример 5.2. Прямоугольный видеоимпульс с единичной амплитудой и длительностью не принадлежит к числу сигналов с ограниченным спектром. Тем не менее модуль его спектральной плотности достаточно быстро (по закону ) уменьшается с ростом частоты.

Описание такого сигнала двумя отсчетами в начале и в конце импульса будет означать замену исходного колебания сигналом со спектром, ограниченным сверху частотой Математическая модель этого сигнала такова:

Если же описать импульс тремя равноотстоящими отсчетами, то приходим к аппроксимирующему сигналу, содержащему частоты вплоть до

Естественно, что с ростом числа учитываемых членов, т. е. с уменьшением временного интервала между выборками, точность аппроксимации будет повышаться.

Оценка ошибки, возникающей при аппроксимации произвольного сигнала рядом Котельникова.

Если — произвольный сигнал, то его можно представить суммой к в которую входит сигнал со спектром, ограниченным значением а также сигнал ошибки аппроксимации со спектром, занимающим в обшем случае бесконечную полосу частот .

Спектры указанных сигналов не перекрываются, поэтому сигналы ортогональны, а их энергии, т. е. квадраты норм, складываются:

В качестве меры ошибки аппроксимации можно принять расстояние, равное норме сигнала ошибки. Если — энергетический спектр сигнала то по теореме Рэлея

Пример 5.3. Дан экспоненциальный видеоимпульс , характеризующийся энергетическим спектром и нормой

Эффективная длительность этого импульса (см. гл. 2)

Спектр рассматриваемого сигнала неограничен. Поэтому следует предварительно подвергнуть сигнал низкочастотной фильтрации, пропустив его через фильтр нижних частот (ФНЧ). Значение верхней частоты полосы пропускания фильтра следует выбирать в зависимости от того, сколь часто берутся отсчеты сигнала на выходе ФНЧ. Предположим, что за время измеряются отсчетов с интервалом . Согласно теореме Котельникова, это означает, что .

Сигнал с выхода ФНЧ восстанавливается по своим отсчетным значениям точно. Однако по отношению к исходному видеоимпульсу неизбежна ошибка. В данном случае норма сигнала ошибки

Относительная ошибка аппроксимации

Видно, что выбранная в примере частота недостаточно высока для достижения удовлетворительной точности воспроизведения исходного сигнала.

Размерность пространства сигналов, ограниченных по спектру и по длительности.

Примеры вычисления спектральных плотностей импульсных сигналов, приведенные в гл. 2, показывают, что любой сигнал конечной длительности теоретически имеет спектр, неограниченно протяженный по оси частот.

Однако часто бывает удобным рассматривать идеализированные модели сигналов, ограниченных как по длительности, так и по протяженности спектра. Подобные модели могут достаточно точно описывать сигналы, применяемые в реальных каналах связи.

Пусть Т — длительность такого сигнала, а — граничная частота его спектра, выраженная в герцах. Тогда база сигнала (см. гл. 4) Для полного описания сигнала нужно иметь в распоряжении независимых отсчетов.

Говорят, что число

является размерностью пространства сигналов, ограниченных по длительности и по частоте.

Число N, как правило, достаточно велико. Например, для описания сигнала в канале радиовещания с граничной частотой 12 кГц на протяжении 1 мин потребуется независимых чисел.

В свое время К. Шеннон предложил интерпретировать любой сигнал с конечными длительностью и полосой как точку в многомерном евклидовом пространстве с числом измерений Отсчетное значение s служит при этом проекцией отображающей точки на координатную ось. Поскольку метрика пространства евклидова и координатные оси взаимно ортогональны, длина вектора сигнала

Величину можно выразить через энергию сигнала следующим образом. Так как

где — средняя мощность сигнала. Отсюда вытекает, что любые сигналы с фиксированными параметрами средними мощностями, не превышающими уровня отображаются точками, лежащими внутри многомерной сферы радиусом

ЛЕКЦИЯ №3 Теорема А.В. Котельникова

Квантование сигналов. Частота дискретизации. Основные методы. Ошибки, оценка ошибок.

В области цифровой обработки сигналов, Теоре́ма Коте́льникова (в англоязычной литературе — теорема Найквиста — Шеннона, или теорема отсчётов) связывает аналоговые и дискретные сигналы и гласит, что, если аналоговый сигнал Теорема котельникова имеет конечный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своимотсчётам, взятым с частотой, большей или равной удвоенной верхней частоте Теорема котельникова. Теорема котельникова

Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временно́й характеристике точек разрыва. Если сигнал имеет разрывы любого рода в функции зависимости его от времени, то его спектральная мощность нигде не обращается в нуль. Именно это подразумевает понятие «спектр, ограниченный сверху конечной частотой Теорема котельникова ».

Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временно́й характеристике. Соответственно, ширина их спектра бесконечна. В таком случае полное восстановление сигнала невозможно, и, из теоремы Котельникова, вытекают два следствия:

1. Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой Теорема котельникова. где Теорема котельникова — максимальная частота, которой ограничен спектр реального сигнала;

2. Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал Теорема котельникова можно представить в виде интерполяционного ряда:

Теорема котельникова

где Теорема котельникова — функция sinc. Интервал дискретизации

Мгновенные значения данного ряда есть дискретные отсчёты сигнала Теорема котельникова .

Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоенной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат [1]. О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом [2] [3]. «Любую функцию Теорема котельникова. состоящую из частот от 0 до Теорема котельникова. можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через Теорема котельникова секунд». Независимо от него эту теорему в 1949 (через 16 лет) году доказал Клод Шеннон [4]. поэтому в западной литературе эту теорему часто называют теоремой Шеннона.

Теорема котельникова

Частота дискретизации (или частота сэмплирования ) — частота, с которой происходит оцифровка, хранение, обработка или конвертация сигнала из аналога в цифру. Частота дискретизации, согласно Теореме Котельникова, ограничивает максимальную частоту оцифрованного сигнала до половины своей величины.

Чем выше частота дискретизации, тем более качественной будет оцифровка. Как следует из теоремы Котельникова для того чтобы одназначно восстановить исходный сигнал, частота дискретизации должна превышать наибольшую необходимую частоту сигнала в два раза.

На данный момент, в звуковой технике среднего уровня глубина дискретизации находится в пределах 10-12 бит. Но на слух заметить разницу между 10 и 12 битами не представляется возможным в связи с тем, что человеческое ухо не способно различить такие малые отклонения. Ещё одной причиной бесполезности служит Коэффициент нелинейных искажений УМЗЧ и других компонентов звукогого тракта, явно превышающий величину шага квантования. Бо́льшее разрешение зачастую носит лишь маркетинговый смысл и фактически на слух не заметно.

Теорема котельниковаТеорема котельниковаТеорема котельникова

Оцифро́вка (англ. digitization ) — описание объекта, изображения или аудио- видеосигнала (в аналоговом виде) в виде набора дискретных цифровых замеров (выборок) этого сигнала/объекта, при помощи той или иной аппаратуры, т. е. перевод его вцифровой вид, пригодный для записи на электронные носители.

Для оцифровки объект подвергается дискретизации (в одном или нескольких измерениях, например, в одном измерении для звука, в двух для растрового изображения) и аналогово-цифровому преобразованию конечных уровней.

Полученный в результате оцифровки массив данных («цифровое представление» оригинального объекта) может использоваться компьютером для дальнейшей обработки, передачи по цифровым каналам, сохранению на цифровой носитель. Перед передачей или сохранением цифровое представление, как правило, подвергается фильтрации и кодированию для уменьшения объема.

Иногда термин «оцифровка» используется в переносном смысле, в качестве замены для соответствующего термина [ уточнить ]. при переводе информации из аналогового вида в цифровой. Например:

· Оцифровка книг — как сканирование, так и (в дальнейшем) распознавание.

· Оцифровка бумажных карт местности — означает сканирование и, как правило, последующую векторизацию (растрово-векторное преобразование, т. е. перевод в формат векторного описания).

При оцифровке сигнала привязанного ко времени, дискретизацию обычно характеризуют частотой дискретизации — частотой снятия замеров

При сканировании изображения с физических объектов, дискретизация характеризуется количеством результирующих пикселов на единицу длины (например, количеством точек на дюйм — англ. dot per inch, DPI ) по каждому из измерений.

В цифровой фотографии дискретизация характеризуется количеством пикселей на кадр.

Дискретные сигналы создаются на основе непрерывных сигналов. Процесс преобразования непрерывного сигнала в дискретный называется «квантование сигнала». Исходный непрерывный сигнал называется «квантуемый сигнал», сигнал, получаемый в результате квантования, называется «квантованный сигнал». Существуют разные способы квантования непрерывного сигнала.

Квантование по времени. Квантованный сигнал содержит отдельные значения (дискреты) квантуемого сигнала, которые выделяются в фиксированные моменты времени. Процесс квантования по времени показан на рис. 21, где x(t) – квантуемый сигнал, x(t) – квантованный сигнал.

Теорема котельникова

Значения сигнала выделяются через равные промежутки времени T, где T – период (интервал) квантования. Следовательно, квантованный сигнал будет состоять из последовательности дискрет квантуемого сигнала, выделенных в моменты времени, кратные периоду квантования. Квантованный сигнал при квантовании по времени описывается решетчатой функцией времени квантуемого сигнала

Теорема котельникова где m – целочисленный аргумент времени, m=1,2,3…

Квантование по уровню. В моменты достижения квантуемым сигналом некоторых фиксированных уровней, квантованному сигналу присваивается значение достигнутого уровня, и это значение квантованного сигнала сохраняется до момента достижения квантуемым сигналам следующего уровня (рис.22).

Теорема котельникова

На рис. 22 для квантуемого сигнала x(t) определены уровни квантования с интервалом (шагом) a. Значения квантованного сигнала x(t) изменяются в момент достижения квантуемым сигналом очередного уровня. В результате квантованный сигнал представляет собой ступенчатую функцию времени.

Типичным устройством, которое осуществляет квантование по уровню, является электромагнитное реле (рис. 23), содержащее электромагнит K и переключаемые электромагнитом электрические контакты S. Входом для реле является напряжение U на обмотке электромагнита, а выходом – состояние контактов S. При непрерывном изменении напряжения на электромагните состояние контактов (замкнуты или разомкнуты) будет изменяться только при переходе величины напряжения через уровень срабатывания Uср реле (уровень срабатывания – значение тока, при котором электромагнит срабатывает и переключает контакты реле).

Таким образом, для реле квантованный сигнал может принимать только два уровня: контакты S разомкнуты, или контакты S замкнуты. Состояние контактов удобно описывать как логическую величину, принимающую значение «1» при замкнутых контактах, и значение «0» при разомкнутых контактах.

Характеристика преобразования входного напряжения U в состояние контактов S для реле показана на рис.23. Это ступенчатая характеристика, изменение уровня которой происходит при входном напряжении U = Uср. Характеристика подобного вида получила название «релейная характеристика». Релейная характеристика является одним из случаев нелинейной характеристики.

Квантование по времени и по уровню. В этом случае оба предыдущих способа комбинируются, поэтому способ квантования называют также комбинированным. При комбинированном квантовании квантованному сигналу в наперед заданные моменты времени присваивается значение ближайшего фиксированного уровня, которого достиг квантуемый сигнал. Это значение сохраняется до следующего момента квантования.

Графики квантуемого и квантованного сигналов показаны на рис. 24. На графике квантуемого сигнала x(t) точками показаны значения достигнутых уровней, ближайших к значениям квантуемого сигнала в момент квантования. Изменения квантованного сигнала происходят в моменты квантования, кратные периоду T квантования по времени. Таким образом, квантованный сигнал будет характеризоваться периодом квантования и значением ближайшего фиксированного уровня.

Типичным примером устройства, в котором имеет место комбинированное квантование, является аналого-цифровой преобразователь (АЦП) и цифровой прибор, построенный с использованием аналого-цифрового преобразователя. Выходная информация таких устройств обновляется с периодом, определяемым длительностью преобразования входного сигнала в цифровой код (квантование по времени), а выходная информация представляется с конечной точностью, определяемой разрешающей способностью квантования или разрядностью кода для представления квантованного сигнала.

Частота дискретизации (или частота семплирования. англ. sample rate ) — частота взятия отсчетов непрерывного во времени сигнала при его дискретизации (в частности, аналого-цифровым преобразователем). Измеряется в герцах.

Термин применяется и при обратном, цифро-аналоговом преобразовании, особенно если частота дискретизации прямого и обратного преобразования выбрана разной (Данный приём, называемый также «Масштабированием времени», встречается, например, при анализе сверхнизкочастотных звуков, издаваемых морскими животными).

Чем выше частота дискретизации, тем более широкий спектр сигнала может быть представлен в дискретном сигнале. Как следует из теоремы Котельникова, для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала.

Некоторые из используемых частот дискретизации звука:

· 8 000 Гц — телефон, достаточно для речи, кодек Nellymoser;

· 12 000 Гц (на практике встречается редко);

· 22 050 Гц — радио;

· 44 100 Гц — используется в Audio CD;

· 48 000 Гц — DVD, DAT;

· 96 000 Гц — DVD-Audio (MLP 5.1);

· 192 000 Гц — DVD-Audio (MLP 2.0);

· 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;

· 5 644 800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

Теорема Котельникова

Ниже будет сформулирована и доказана теорема Котельникова (теорема отсчётов) — основополагающая теорема для систем цифровой обработки сигналов, телекоммуникаций, а также теории связи. Теорема была сформулирована и доказана советским академиком В. А. Котельниковым в 30-х годах 20 века. Суть теоремы состоит в том, что вместо передачи непрерывного аналогового сигнала можно передавать соответствующий ему дискретный сигнал.

Формулировка теоремы: непрерывный сигнал, спектр которого не содержит частот больших fm может быть однозначно представлен своими мгновенными значениями (выборками), разделёнными одинаковыми интервалами времени, длина которых не должна превышать 1/2fm.

Другими словами период дискретизации должен хотя бы в два раза меньше периода наивысшей частотной составляющей спектра непрерывного сигнала, т.е. на каждый период наивысшей частотной составляющей должно приходиться по крайней мере два отсчёта (выборки). Таким образом, частота следования отсчётов должна по крайней мере в два раза превышать наивысшую частоту в спектре непрерывного сигнала. Полученный дискретный сигнал может быть передан по каким-либо линиям связи и из него фильтром нижних частот на стороне приёмника может быть однозначно восстановлен исходный аналоговый сигнал.

С другой стороны, непрерывный сигнал может иметь бесконечный спектр частот, но так как гармоники этого сигнала могут монотонно уменьшаться по амплитуде при увеличении номера гармоники, то с некоторой степенью точности можно считать спектр такого сигнала ограниченным.

Точность воспроизведения непрерывного сигнала во многом определяется характеристиками фильтра нижних частот и не оказывает влияния на корректность теоремы Котельникова в данном случае. Также, точность воспроизведения непрерывного сигнала определяется количеством уровней квантования в процессе получения отсчётов. Однако, если выбрать количество уровней квантования в соответствии с динамическим диапазоном и чувствительностью конкретной системы, то точность воспроизведения непрерывного сигнала не будет ухудшаться процессом получения отсчётов. Это утверждение, в частности, может быть до определённой степени справедливым, когда уровень шумов, присутствующий в исходном сигнале больше шага квантования. В этом случае не имеет смысла увеличивать количество уровней квантования, так как к повышению точности получения отсчётов это не приведёт.

Теорема Котельникова определяет также, что в непрерывном сигнале и соответствующем ему дискретном сигнале, полученном по приведённым выше правилам, содержится одинаковая информация, поэтому представление одного из этих двух сигналов другим является взаимно-однозначным.

Доказательство теоремы начнём с рассмотрения абстрактного вспомогательного непрерывного сигнала, представленного бесконечной последовательностью импульсов с некоторым периодом повторения (рис. 1). Исследуемый непрерывный сигнал и его спектр показан на рис. 2. Цель введения вспомогательного сигнала: показать, что и в нём после некоторых преобразований и в дискретном сигнале, полученном в соответствии с теоремой Котельникова, содержится одинаковая информация.

Далее, для восстановления исходного непрерывного сигнала из сигнала, полученного перемножением исходного и вспомогательного сигналов требуется пропустить полученный сигнал через фильтр нижних частот, который подавит все частоты, выше fm. Однако такой подход требует пояснения для дискретного сигнала. Дело в том, что на выходе ЦАП формируется не последовательность импульсов бесконечно малой ширины, а ступенчатый сигнал. Это объясняется самим принципом работы ЦАП. Если исследовать спектр полученного на выходе ЦАП сигнала, то окажется, что он довольно сильно искажён по сравнению со спектром полученного сигнала в доказательстве теоремы. Это можно объяснить тем, что сигнал на выходе ЦАП представляет собой свёртку полученного в доказательстве теоремы сигнала и сигнала в виде прямоугольного импульса длительностью, соответствующей длительности периода дискретизации. Опять же, по теории операционного исчисления, изображение свёртки оригиналов двух функций равно произведению их изображений.

Получаемый на выходе ЦАП сигнал и его спектр показаны на рис. 5. Пунктиром отмечен спектр прямоугольного импульса. Дублированные части спектра показаны не перемноженными на функцию вида sin(x)/x. Спектр любого прямоугольного импульса задаётся функцией, подобной sin(x)/x. Для восстановления непрерывного исходного сигнала в таком случае нужно рассчитать импульсную характеристику фильтра нижних частот таким образом, чтобы после применения этого фильтра в спектре полученного сигнала производилась ещё и операция деления на соответствующим образом подобранную функцию вида sin(x)/x.

Так как в практических случаях не удаётся достичь точной рассчитанной импульсной характеристики фильтра, может возникнуть скат спектра импульсной характеристики в области частоты среза фильтра. Ширина ската зависит от типа используемого аналогового фильтра. Например, при использовании фильтра Бесселя, ширина ската довольно значительна, а при использовании фильтра Чебышева ширина ската гораздо меньше, но фильтр Чебышева имеет ряд других недостатков, которые обсуждаются в главе «Применение цифровых фильтров». Из-за ската в области частоты среза, некоторая часть спектра в окрестностях частоты среза является неиспользуемой и тогда используют фильтр с частотой среза, превышающей fm на ширину ската.

В заключение следует отметить, что рассмотренный при доказательстве теоремы Котельникова вспомогательный сигнал является чисто абстрактным и в природе существовать не может, так как невозможно получить бесконечно малую ширину импульса. Однако, можно сделать некоторое упрощение, основанное на следующем факте. Любая линейная система имеет конечное быстродействие, т. е. работает в конечном временном интервале. Если это электрическая схема, то быстродействие, как правило, определяется величинами ёмкостей, входящих в состав схемы. Если на вход такой системы подать импульс, имеющий единичную амплитуду и длина которого будет намного меньше нижней границы временного интервала работы схемы, то этот импульс будет воспринят так же как и идеальный (т. е. имеющий бесконечно малую ширину и единичную площадь). Таким образом, в практических случаях существует приближение вспомогательного сигнала, использованного при доказательстве теоремы.

Цифрова́я обрабо́тка сигна́лов (ЦОС, DSP — англ. digital signal processing) — преобразование сигналов, представленных в цифровой форме.

Любой непрерывный (аналоговый) сигнал может быть подвергнут дискретизации по времени и квантованию по уровню (оцифровке), то есть представлен в цифровой форме. Если частота дискретизации сигнала не меньше, чем удвоенная наивысшая частота в спектре сигнала (то есть ), то полученный дискретный сигнал эквивалентен сигналу по методу наименьших квадратов (МНК) (см. Теорема Котельникова).

При помощи математических алгоритмов преобразуется в некоторый другой сигнал . имеющий требуемые свойства. Процесс преобразования сигналов называется фильтрацией, а устройство, выполняющее фильтрацию, называется фильтр. Поскольку отсчёты сигналов поступают с постоянной скоростью . фильтр должен успевать обрабатывать текущий отсчет до поступления следующего (чаще — до поступления следующих n отсчётов, где nзадержка фильтра), то есть обрабатывать сигнал в реальном времени. Для обработки сигналов (фильтрации) в реальном времени применяют специальные вычислительные устройства — цифровые сигнальные процессоры.

Всё это полностью применимо не только к непрерывным сигналам, но и к прерывистым, а также к сигналам, записанным на запоминающие устройства. В последнем случае скорость обработки непринципиальна, так как при медленной обработке данные не будут потеряны.

Различают методы обработки сигналов во временной (англ. time domain ) и в частотной (англ. frequency domain ) области. Эквивалентность частотно-временных преобразований однозначно определяется через преобразование Фурье.

Обработка сигналов во временной области широко используется в современной электронной осциллографии и в цифровых осциллографах. Для представления сигналов в частотной области используются цифровые анализаторы спектра. Для изучения математических аспектов обработки сигналов используются пакеты расширения (чаще всего под именем Signal Processing) систем компьютерной математики MATLAB, Mathcad, Mathematica, Maple и др.

В последние годы при обработке сигналов и изображений широко используется новый математический базис представления сигналов с помощью «коротких волночек» — вейвлетов. С его помощью могут обрабатываться нестационарные сигналы, сигналы с разрывами и иными особенностями и сигналы в виде пачек.

Цифровая обработка сигналов – некоторые основные понятия.

Физические величины, если только не опускаться на квантовый уровень, изменяются непрерывно. Однако цифровая обработка сигналов работает исключительно с дискретными величинами, причем дискретность проявляется двояко — при квантовании по времени и при квантовании по амплитуде сигнала. Это видимое усложнение вполне оправдано тем, что для обработки мы может использовать цифровые вычислительные машины, полностью избавившись от проблемы нестабильности параметров, столь болезненной при обработке аналоговой. Не меньшим преимуществом является то, что стоимость цифровой обработки низка и продолжает падать, даже при очень сложных ее видах. Это позволяет создавать эффективные системы обработки сигналов при разумных затратах. Насколько допустима такая замена? Не приводит ли она к потере точности?

Дискретный сигнал получается из аналогового операцией дискретизации – взятием отсчетов (измерением) через интервал времени Т. В принципе возможна и цифровая обработка при неравномерной дискретизации по времени, однако эта тема куда менее разработана математически и, по-видимому, представляет не столь большой практический интерес. При этой операции представляется возможной потеря информации, заключенной в значениях сигнала в интервалах между отсчетами. Условия, при которых осуществимо восстановление аналогового сигнала по полученному из него цифровому, то есть сохранение всей исходно содержавшейся в сигнале информации, выражаются теоремой Найквиста-Уиттекера-Котельникова-Шеннона (в зависимости от пристрастий автора встречаются все мыслимые комбинации этих имен). Для этого требуется, чтобы полоса частот входного сигнала была бы не менее чем вдвое уже, чем частота дискретизации, то есть fc =1/2fd. (Нередко приводят частную ее формулировку, верную для сигналов, чья полоса частот начинается с нулевой частоты – “чтобы не присутствовали частоты большие, нежели половина частоты дискретизации”).

Если же такие частоты имеются, возникает эффект маскировки (подмены) частот. Наглядным его проявлением может служить иллюзия, часто проявляющаяся в кино – вращающееся колесо вдруг начинает вращаться в противоположную сторону. Здесь частота смены кадров является аналогом частоты дискретизации, и когда колесо совершает между последовательными кадрами более чем пол-оборота, оно кажется вращающимся в другую сторону и с иной скоростью. Для частоты f маскируются под нее частоты (2fc ±f), (4fc ±f), (6fc ±f) и т.д. Употребляется также термин “алиасы”, от aliases. Неучет этого эффекта может приводить к грубым ошибкам: так, в одном, проведенном в серьезной лаборатории исследовании было обнаружено наличие в электроэнцефалограмме у всех больных, в отличие от здоровых испытуемых, частот 22 и 28 герц. Однако, заметив, что частота дискретизации в данном исследовании была принята 128 Гц, видим, что эти частоты суть “призраки”, порождения помехи на частотах 100 и 150 Гц – второй и третьей гармониках сетевой частоты (их источником могли быть, например, нелинейные устройства в цепях питания аппаратуры, такие, как выпрямители и трансформаторы). Регистрация же их исключительно у больных вызвана была тем, что в условиях больницы, сравнительно с университетской лабораторией, где записывали ЭЭГ здоровых испытуемых, уровень помех существенно выше.

Борьба с эффектом маскирования частот (антиалиасинг) приводит к необходимости предварительной фильтрации сигнала, исключающей частоты выше половины частоты дискретизации, причем ввиду несовершенства реальных фильтров частоту среза выбирают заведомо более низкую, чем требуемая теоретически, как правило, в три-четыре раза ниже частоты дискретизации. Несовершенство это порождено не неумением инженеров-электриков, а носит фундаментальный характер. Дело в том, что сигнал с ограниченной частотной полосой в принципе не может быть конечной длины, а если он конечен во времени, то содержит бесконечную по ширине полосу частот. (Это ограничение количественно выражается соотношением неопределенностей, связывающим длину импульса и его частотную полосу – бесконечно короткий импульс содержит “в зародыше” все возможные частоты, а строго моночастотная синусоида должна простираться от минус до плюс бесконечности.) Поэтому чересчур высококачественный фильтр будет иметь слишком большое время установления, а “идеальный” — вообще бесконечное.

Измерительный преобразователь (ИП) — СИ, предназначенное для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи.

По расположению в измерительной цепи различают первичные и промежуточные измерительные преобразователи.

Первичный измерительный преобразователь, называемый также датчиком,это тот измерительный преобразователь, на который непосредственно действует измеряемая величина.

Остальные измерительные преобразователи называют промежуточными. Они расположены после первичного измерительного преобразователя и могут выполнять различные операции преобразования измерительного сигнала.

Как правило, к ним относятся:

• изменение физического рода величины;

• масштабное (линейное или нелинейное) преобразование;

• функциональное преобразование (любые математические операции над значениями величины).

Следует иметь в виду, что указанная классификация достаточно условна. Во-первых, в одном СИ может быть несколько первичных измерительных преобразователей (например, термопара в цепи термоэлектрического термометра). Во-вторых, специфика аналитических измерений также приводит к нарушению указанного принципа классификации.

Аналитические измерения представляют собой преобразование измеряемой величины, являющейся информативным параметром анализируемой среды (информативный параметрпараметр, несущий информацию о измеряемой величине), и сравнением ее с мерой. Обычно они проводятся с помощью совокупности измерительных преобразователей. включающей следующие виды измерительных преобразователей :

• ИП1: измерительный преобразователь типа состав — состав, обеспечивающие масштабные преобразования анализируемой пробы. Проба характеризуется информативным параметром С (содержанием измеряемого компонента) и комбинацией неинформативных параметров Сн, к которым относятся содержание неопределяемых (мешающих) компонент и термодинамические параметры анализируемой среды. При прохождении через ИП1происходят процессы очистки, сушки, изменения температуры и давления смеси до требуемых величин и, после этих преобразований анализируемой среды, отбор ее требуемого количества. ИП1 обычно называют блоком отбора и подготовки пробы;

• ИП2: измерительный преобразователь типа состав — свойство, обеспечивающие преобразование измеряемой величины С в то или иное физико-химическое свойство, удобное для последующего измерения и регистрации. Во многих случаях это преобразование идет в два этапа: получение промежуточного продукта в жидкой либо твердой фазе с содержанием компонента Ynpом(C), а затем его преобразование в свойство Ф(Ynpом)

• ИП3: измерительный преобразователь типа свойство — выходной сигнал, обеспечивающие преобразование измеряемой величины в выходной измерительный сигнал W. Обычно это преобразование также осуще­ствляется в два этапа: в промежуточный сигнал Wnpом(Ф) и затем в выходной сигнал W(Wnpом ). При этом преобразование Wnpом в W — это преобразование одной электрической величины в другую.

Получив с помощью совокупности измерительных преобразователей выходные сигналы от анализируемого объекта, по калибровочной зависимости произво­дят сравнение измеряемой величины с мерой и вырабатывают оценочные значения С* измеряемой величины С.

Эта совокупность измерительных преобразователей не укладывается в приведенную классификацию, т. к. измеряемая величина непосредственно воздействует не только на первый измерительный преобразователь измерительной цепи, но и на их совокупность, включающую ИП1, ИП2 и первый преобразователь группы ИП3. При этом только второй преобразователь группы ИП3 является промежуточным. Отсюда следует, что в аналитических приборах роль первичного измерительного преобразователя выполняет совокупность измерительных преобразователей, осуществляющая последовательное, в несколько этапов, преобразование измеряемой величины в измерительный сигнал.

К средствам измерений относятся меры, измерительные преобразователи, измерительные приборы, измерительные установки и информационно-измерительные системы.

Мерой называется средство измерений, предназначенное для воспроизведения заданного значения физической величины.

Измерительный преобразователь – это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающийся непосредственному восприятию наблюдателем. Измерительный преобразователь, к которому подводится измеряемая величина, называется первичным измерительным преобразователем .

В зависимости от характера преобразуемых величин различают следующие виды измерительных преобразователей:

  • преобразователи электрических величин в электрические (делители напряжения, измерительные трансформаторы);
  • преобразователи магнитных величин в электрические (измерительные катушки);
  • преобразователи неэлектрических величин в электрические (термо- и тензопреобразователи, реостатные, емкостные).

В зависимости от вида входного и выходного сигналов различают измерительные преобразователи:

  • аналоговые преобразователи. у которых на входе и выходе аналоговые сигналы;
  • аналогоцифровые преобразователи. имеющие на входе аналоговый сигнал, а на выходе цифровой (кодированный) сигнал;
  • цифроаналоговые преобразователи. у которых на входе цифровой, а на выходе – аналоговый сигнал.

Первичные измерительные преобразователи, размещаемые непосредственно на объекте исследования и удаления от места обработки, отображения и регистрации измерительной информации, называют датчиками .

Измерительные приборы – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

По физическим явлениям, положенным в основу работы, измерительные приборы можно разделить на электроизмерительные (электромеханические, электротепловые, электрохимические и др.) и электронные приборы. По назначению их подразделяют на приборы для измерения электрических и неэлектрических (магнитных, тепловых, химических и др.) физических величин, по способу представления результатов – на показывающие и регистрирующие. В зависимости от регистрации измеряемой величины – аналоговые и цифровые измерительные приборы.

Измерительные установки – комплекс средств измерений, включающий в себя меры, измерительные приборы и преобразователи, вспомогательные устройства, объединенные общей схемой, с помощью которой можно измерить одну или несколько физических величин.

^ Диапазон измерений – область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерений. Он ограничивается наибольшим и наименьшим значениями.

Область значений шкалы, ограниченную начальными и конечными значениями шкалы, называют диапазоном показаний .

В каноническом разложении Котельникова интервал дискретизации случайного процесса определяется его интервалом корреляции, максимальным значением спектральной плотности и значением спектральной плотности на нулевой частоте.

Интервал дискретизации больше или равен интервалу корреляции процесса.

Из классической теории сигналов известно, что значения отсчетов, взятых через интервал Котельникова, взаимно-некоррелированы, если спектр сигнала в занимаемой им полосе частот равномерен (белый шум). Однако на практике в основном используются сигналы, спектр которых неравномерен, поэтому корреляция между отсчетами не равна нулю. При этом степень корреляции возрастает с увеличением частоты дискретизации. Типичным примером таких сигналов является речь, где корреляция между соседними отсчетами достаточно велика при соблюдении теоремы Котельникова в процессе дискретизации.

Часто используется понятие «интервал корреляции » или «время корреляции «, под которыми понимается величина временного сдвига . при превышении которого корреляцией можно пренебречь в условиях конкретного эксперимента. Обычно интервал корреляции определяют как .

Рис. 4.1. Коррелированный (вверху) и некоррелированный (внизу) случайный процесс (погрешность измерений)

Если интервал корреляции равен нулю, то случайный процесс называют некоррелированным, или белым шумом. В противном случае случайный процесс является коррелированным. В качестве примера на рис. 4.1 приведен пример коррелированного (вверху) и некоррелированного (внизу) случайного процесса. Реальные процессы все являются коррелированными, поскольку имеют ограниченную мощность и, следовательно, ограниченную полосу частот. Однако на определенном интервале времени (частот) их можно приближенно считать некоррелированными.

время дискретизации &#&16;τ = &#&64;k+1 — &#&64;k (или соответствующую ему частоту

дискретизации сигналов &#&16;φ = 1/&#&16;τ);

Время дискретизации сигналов первичных преобразователей или

соответствующую ему частоту дискретизации сигналов выбирают в зависимости от

требований к погрешности измерений, учитывая то, что частота дискретизации

сигналов определяется требуемым частотным диапазоном измеряемого сигнала и

ограничениями амплитудно-частотных характеристик первичных преобразователей.

Она должна как минимум в два – три раза превышать максимальную частоту

возможного частотного диапазона измеряемого сигнала (для динамических

измерений). Конец формы

АСУ ТП строится по трехуровневой иерархии:

  • нижней уровень — уровень контрольно-измерительных приборов и исполнительных механизмов;
  • средний уровень — уровень контроллеров и оборудования связи
  • верхний уровень — уровень серверов и операторских станций

В связи с высокими требованиями к надежности системы управления в химической промышленности все уровни АСУ ТП резервируются. Для обеспечения бесперебойной передачи данных между подсистемами и уровнями иерархии приме­няются высоконадежные и помехоустойчивые каналы пере­дачи данных. В настоящее время хорошо зарекомендовало себя для этих целей оптоволоконная кольцевая сеть Industrial Ethernet.

Обработка информации осуществляется в модуле централь­ного процессора контроллера, что обеспечивает высокую надежность системы управления и гарантию исполнения всех необходимых алгоритмов, который построен по модульному принципу, позволяющему производить оперативную замену вышедших из строя модулей.

Отображение информации о режимах управления установки и управление ее исполнительными механизмами осуществля­ется с автоматизированного рабочего места оператора (АРМ), реализованного на 2-х идентичных промышленных компьюте­рах в «горячем» резерве с установленным пакетом визуали­зации на базе операционной системы Windows XP.

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *