Температурные шкалы

Шкала Фаренгейта и другие температурные шкалы

February 7, 2013

Измерять температуру человечество научилось примерно 400 лет назад. Но первые приборы, напоминающие нынешние термометры, появились только в Х V III веке. Изобретателем первого градусника стал ученый Габриэль Фаренгейт. Всего в мире было изобретено несколько разных температурных шкал, одни из них были более популярны и используются до сих пор, другие постепенно вышли из употребления.

Температурные шкалы – это системы температурных значений, которые возможно сопоставить между собой. Так как температура не относится к величинам, подлежащим непосредственному измерению, то значение ее связывают с изменением температурного состояния какого-либо вещества (например, воды). На всех температурных шкалах, как правило, фиксируют две точки, соответствующие температурам перехода выбранного термометрического вещества в разные фазы. Это так называемые реперные точки. Примерами реперных точек может служить точка закипания воды, точка твердения золота и т. п. Одну из точек принимают за начало отсчета. Интервал между ними делят на определенное количество равных отрезков, являющихся единичными. За единицу измерения температуры повсеместно принят один градус.

Наиболее популярные и получившие самое широкое распространение в мире шкалы температур – шкала Цельсия и Фаренгейта. Впрочем, рассмотрим по порядку имеющиеся шкалы и попробуем сравнить их с точки зрения удобства использования и практической пользы. Наиболее известных шкал пять:

1. Шкала Фаренгейта была изобретена Фаренгейтом, немецким ученым. В один из холодных зимних дней 1709 года ртуть в термометре ученого опустилась до очень низкой температуры, которую он предложил принять за нуль по новой шкале. Другой реперной точкой стала температура человеческого тела. Температурой замерзания воды по его шкале стали +32°, а температурой кипения +212°. Шкала Фаренгейта не является особенно продуманной и удобной. Ранее она широко применялась в англоязычных странах, в настоящее время – практически только в США.

2. По шкале Реомюра, изобретенной французским ученым Рене де Реомюром в 1731 году, нижней реперной точкой служит точка замерзания воды. Шкала основана на использовании спирта, который расширяется при нагревании, за градус была принята тысячная часть объема спирта в резервуаре и трубке при нуле. Сейчас эта шкала вышла из употребления.

3. По шкале Цельсия (предложена шведом Андерсом Цельсием в 1742 году) за нуль принята температура смеси льда и воды (температура, при которой тает лед), другая основная точка – температура, при которой вода закипает. Интервал между ними решено было поделить на 100 частей, и одна часть принята за единицу измерения – градус Цельсия. Эта шкала более рациональна, чем шкала Фаренгейта и шкала Реомюра, и сейчас используется повсеместно.

4. Шкала Кельвина изобретена в 1848 году лордом Кельвином (английский ученый У. Томсон). На ней нулевая точка соответствовала самой низкой возможной температуре, при которой прекращается движение молекул вещества. Это значение было теоретически вычислено при изучении свойств газов. По шкале Цельсия это значение соответствует приблизительно – 273°С, т. е. нуль по Цельсию равняется 273 К. Единицей измерения новой шкалы стал один кельвин (первоначально именовался «градус Кельвина»).

5. Шкала Ранкина (по фамилии шотландского физика У. Ранкина) имеет тот же принцип, что у шкалы Кельвина, а размерность ту же, что шкала Фаренгейта. Эта система практически не получила распространения.

Значения температур, которые дает нам шкала Фаренгейта и Цельсия, могут быть легко переведены друг в друга. При переводе «в уме» (т. е. быстро, не пользуясь специальными таблицами) значений по Фаренгейту в градусы Цельсия нужно исходную цифру уменьшить на 32 единицы и умножить на 5/9. Наоборот (из шкалы Цельсия в Фаренгейта) – умножить исходное значение на 9/5 и добавить 32. Для сравнения: температура абсолютного нуля по Цельсию – 273,15 °, по Фаренгейту– 45&,679deg;.

Температурные шкалы

7 вещей, которые следует мыть и стирать каждый день Это может показаться еще одним пунктом в бесконечном списке ежедневных дел, но за этим кроется эффективный метод, который позволяет создать положитель.

Температурные шкалы

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Температурные шкалы

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Температурные шкалы

5 привычек, которые гарантируют, что вы не достигните успеха в жизни Наши ежедневные привычки делают из нас тех, кем мы являемся. Какие-то из них способны привести нас к успеху, а другие, напротив, гарантируют неизбежны.

Температурные шкалы

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Температурные шкалы

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Температурные шкалы

Измерение теплоэнергетических величин

Одной из важнейших теплоэнергетических величин является температура. Температура – физическая величина, характеризующая степень нагретости тела или его теплоэнергетический потенциал. Практически все технологические процессы и различные свойства вещества зависят от температуры.

В отличие от таких физических величин, как масса, длина и т.п. температура является не экстенсивной (параметрической), а интенсивной (активной) величиной. Если гомогенное тело разделить пополам, то его масса также делится пополам. Температура, являясь интенсивной величиной, таким свойством аддитивности не обладает, т.е. для системы, находящейся в термическом равновесии, любая часть системы имеет одинаковую температуру. Поэтому не представляется возможным создание эталона температуры, подобно тому, как создаются эталоны экстенсивных величин.

Измерить температуру можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению. Эти свойства тел называют термометрическими. К ним относятся длина, плотность, объем, термоэ.д.с. электросопротивление и т.д. Вещества, характеризующиеся термометрическими свойствами, называю термометрическими. Средство измерения температуры называют термометром. Для создания термометра необходимо иметь температурную шкалу.

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В этой связи представляется возможным построение температурных шкал на основе выбора любого термометрического свойства. В тоже время нет ни обного термометрического свойства, которое линейно связано с изменением температуры и не зависит от других факторов в широком интервале измерения температур.

Первые температурные шкалы появились в XVIII веке. Для построения их выбирались две опорные (реперные) точки t1 и t2. представляющие собой температуры фазового равновесия чистых веществ. Разность температур t2 — t1 называют основным температурным интервалом. Немецкий физик Габриель Даниель Фаренгейт (1715 г.), шведский физик Андерс Цельсий (1742 г.) и французский физик Рене Антуан Реомюр (1776 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовали расширение объема жидкости V. т.е.

где а и b – постоянные коэффициенты.

Подставив в это уравнение V = V1 при t = t1 и V = V2 при t = t2. после преобразования получим уравнение температурной шкалы:

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t1 соответствовали +32 0. 0 0 и0 0. а точке кипения воды t2 – 212 0. 80 0 и 100 0. Основной интервал t2 – t1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта – t 0 F, градусом Реомюра t 0 R и градусом Цельсия t 0 C. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток – масштаб шкалы.

Для пересчета температуры из одной шкалы в другую используют соотношение:

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (ртуть, спирт и др.), использующих одно и тоже термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Это обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для разных термометрических веществ. В частности, нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для разных капельных жидкостей.

На основе описанного принципа можно построить любое количество шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал — условными градусами.

Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной .

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия h тепловой машины, работающей по обратному циклу Карно, определяется только температурой нагревателя Тн и холодильника Тх и не зависит от свойств рабочего вещества:

где Qн и Qх – соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство

Следовательно, используя один объект в качестве нагревателя, а другой – в качестве холодильника и проведя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Ткв и таяния льда Ттл равной 100 0. Принятие такой разности преследовало цель сохранения преемственности числового значения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Т.О. обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Qкв и Qтл. и приняв Ткв – Ттл = 100, получим:

Для любой температуры Т нагревателя при неизменном значении Ттл холодильника и количества теплоты Qтл. отдаваемой ему рабочим веществом машины Карно, будем иметь:

Уравнение (6) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q, полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термодинамического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратному циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково).

Из определения к.п.д. следует, что при максимальном значении h=1 должна быть равна нулю Тх. Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают «К».

Термодинамическая шкала температур, основанная на двух реперных точках, обладает недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, т.к. они зависят от давления, а также от содержания солей в воде. Поэтому Кельвин и Менделеев высказали соображение о целесообразности построения термодинамической шкалы температур по одной реперной точке.

Консультативный комитет по термометрии Международного комитета мер и весов в 1954 году принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки – тройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешность не более 0,0001 К. Температура этой точки принята равной 273, 16 К, т.е. выше температуры таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который практически не реализуется, но имеет строго фиксированной положение.

В 1967 году XIII Генеральная ассамблея по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин – 1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть выражена также в градусах Цельсия:

ТЕМПЕРАТУРНЫЕ ШКАЛЫ это:

системы сопоставимых значений темп-ры. Темп-ру невозможно измерить непосредственно; её значение определяют по температурному изменению к.-л. удобного для измерений физ. св-ва в-ва (см. ТЕРМОМЕТРИЯ ). Термометрич. св-вом х могут быть давление газа, электрич. сопротивление, тепловое расширение жидкости, скорость звука и т. д. При построении Т. ш. приписывают значение темп-ры t1 и t2 двум фиксированным температурным точкам х=х1 и х=х2, напр. точке плавления льда и точке кипения воды. Разность темп-р i2-t1 наз. основным температурным интервалом Т. ш. Считая произвольно, что связь между выбранным термометрич. св-вом х и t линейная, и полагая для удобства t1=0, получаем для любого t по установленной т. о. эмпирической или условной Т. ш.

Т. ш. представляет собой, т. о. конкретную функциональную числовую связь темп-ры со значениями измеряемого термометрич. св-ва. Возможно неограниченное число Т. ш. различающихся по термометрич. св-ву, принятой зависимости t(х) и темп-рам фиксированных точек. В простейшем случае Т. ш. различаются значениями t1 и t2, принятыми для одинаковых физ. состояний. Так, в шкалах Цельсия t°С, Реомюра t°R и Фаренгейта t°F точкам плавления льда и кипения воды при норм. давлении соответствуют разные значения темп-ры. Соотношение для пересчёта темп-ры из одной шкалы в другую: t°С=1,25 t°R=5/9(t°F-32). В общем случае Т. ш. различающиеся по термометрич. св-ву, существенно различны и пересчёт темп-ры от одной Т. ш. к другой без дополнит. эксперим. данных невозможен.

Принципиальный недостаток эмпирич. Т. ш.— их зависимость от термометрич, в-ва — отсутствует у термодинамической Т. ш. основанной на втором начале термодинамики. При определении термодинамич. Т. ш. исходят из Карно цикла. Если в цикле Карно тело, совершающее цикл, поглощает теплоту Q1 при темп-ре Т1 и отдаёт теплоту Q2 при темп-ре Т2, то отношение T1/T2=Q1/Q2 не зависит от св-ва рабочего тела и позволяет по доступным для измерений величинам Q1 и Q2 определять термодинамич. темп-ру. Дополнит. преимущество термодинамич. Т. ш. в том, что определённые по ней темп-ры входят в ф-лы термодинамики, служащие основой всех теплоофиз. расчётов. Для термодинамич. Т. ш. как и для любой другой, необходимо задать значения двух фиксированных темп-р. Общепринято считать T1=0 при абс. нуле темп-р и T2=273,15 К в точке плавления льда при норм. давлении. Температура по термодинамич. Т. ш. измеряется в Кельвинах (К). Введение T1=0 явл. экстраполяцией и не требует реализации абс. нуля. Определённая т. о. термодинамическая, или абсолютная, Т. ш. (шкала Кельвина) имеет единицу темп-ры, совпадающую с таковой для стоградусной шкалы Цельсия, основанной на идеальном газе и значениях tl=0°C (в точке плавления льда) и t2=100°C (в точке кипения воды). Соотношение между темп-рами по шкалам Цельсия и Кельвина Tк=t°с+273,15К. В США часто применяют термодинамич. Т. ш. Ранкина, темп-ра TR по к-рой связана с Тк. соотношением: TК = 5/9TR.

На практике при измерении темп-ры по термодинамич. Т. ш. применяют, как правило, не цикл Карно, а одно из строгих следствий второго начала термодинамики, связывающее удобно измеряемое термометрич. св-во с термодинамич. темп-рой. В числе таких соотношений: законы идеального газа, восприимчивость идеального парамагнетика, законы излучения абсолютно чёрного тела и т. д. В широком интервале темп-р, примерно от точки кипения гелия до точки затвердевания золота, наиболее точные измерения термодинамич. темп-ры обеспечивает газовый термометр.

Для практич. целей измерять термодинамич. темп-ру одним из указанных методов с высокой точностью невозможно. Поэтому значения Т по термодинамич. Т. ш. наносят на удобный вторичный термометр. часто более чувствительный и стабильный, чем прибор, воспроизводящий термодинамич. Т. ш. Поскольку для термометрич. св-ва вторичного термометра, напр. электрич. сопротивления платины, нет заранее точно известной связи с Т, его градуируют по термодинамич. Т. ш. в количестве точек, достаточном для нахождения всей градуировочной кривой. Трудность работы с термометром, измеряющим термодинамич. темп-ру, и его худшая воспроизводимость по сравнению со вторичным термометром заставляет на практике градуировать его по высокостабильным реперным температурным точкам, таким, как тройные точки водорода, кислорода, аргона, точки кипения этих и др. газов (напр. неона), точки затвердевания чистых металлов и др. темп-ры к-рых по термодинамич. Т. ш. заранее найдены предельно точными измерениями. Вычисление всей градуировочной кривой вторичного термометра производится методами, разработанными при исследовании его термометрич. св-ва приборами, измеряющими термодинамич. темп-ру. Т. о. устанавливается основанная на вторичном термометре практическая Т. ш. совпадающая с термодинамич. Т. ш. в пределах точности измерений, воспроизводимости приборов и методов вычисления градуировочной кривой. Если дополнительно показано, что осуществлённые т. о. градуировки всех вторичных термометров выбранного типа совпадают с высокой точностью, то такую Т. ш. считают независимой от конкретного термометра и удобной в качестве Междунар. практич. Т. ш. В СССР принята Междунар. практич. Т. ш. (МПТШ-68), по к-рой градуируются все приборы для измерения темп-ры.

Физический энциклопедический словарь. — М. Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

Смотреть что такое «ТЕМПЕРАТУРНЫЕ ШКАЛЫ» в других словарях:

ТЕМПЕРАТУРНЫЕ ШКАЛЫ — системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры… … Большой Энциклопедический словарь

ТЕМПЕРАТУРНЫЕ ШКАЛЫ — ТЕМПЕРАТУРНЫЕ ШКАЛЫ, системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы, в основе которых лежит какое либо свойство вещества, зависящее от температуры (тепловое расширение,… … Современная энциклопедия

температурные шкалы — системы сопоставимых числовых значений температуры. Существуют абсолютные термодинамические температурные шкалы (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры… … Энциклопедический словарь

Температурные шкалы — системы сопоставимых числовых значений температуры (См. Температура). температура не является непосредственно измеряемой величиной; её значение определяют по температурному изменению какого либо удобного для измерения физического свойства … Большая советская энциклопедия

ТЕМПЕРАТУРНЫЕ ШКАЛЫ — последовательности значений, отражающие упорядоченную совокупность разл. по размеру единиц температур. Первоначально Т. ш. (и единицы темп ры) основывали на термометрах, используя разл. зависящие от темп ры св ва в ва. В качестве двух реперных… … Большой энциклопедический политехнический словарь

Температурные шкалы — системы сопоставимых числовых значений температуры. Для построения Т. ш. необходимо выбрать начало отсчета температуры и размер единицы температуры (градуса). Существует абсолютная термодинамическая Т. ш. (шкала Кельвина) и различные эмпирические … Астрономический словарь

ТЕМПЕРАТУРНЫЕ ШКАЛЫ — системы сопоставимых числовых значений темп ры. Существуют абс. термодинамич. Т. ш. (шкала Кельвина) и разл. эмпирич. Т. ш. реализуемые при помощи свойств в в, зависящих от темп ры (тепловое расширение, изменение электрич. сопротивления с темп… … Естествознание. Энциклопедический словарь

Температурные шкалы — по следовательности значений, отражающие упорядоченную совокупность различных по значению температур. По системе СИ термодинамическая (основная) температурная шкала не зависит от рода термометрических веществ и имеет одну реперную точку тройную… … Энциклопедический словарь по металлургии

ТЕМПЕРАТУРНЫЕ ШКАЛЫ — последовательности значений, отражающие упорядоченную совокупность различных по значению температур. По системе СИ термодинамическая (основная) температурная шкала не зависит от рода термометрического вещества и имеет одну реперную точку тройную… … Металлургический словарь

Градус Цельсия — (обозначение: °C)  широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином … Википедия

  • Ежедневник недатированный’Girls in the City’, Modo Arte, 130 х 190 мм, 272 стр, резинка. Недатированный ежедневник. Формат А 5 (130 х 190 мм), 272 стр. Твердая обложка, полноцветная печать, матовое ламинирование, выборочное лакирование, закрывается на резинку, тонированный… Подробнее Купить за 179 руб

Температурная шкала Фаренгейта, Цельсия, Кельвина

Самыми известными, на данный момент, температурными шкалами являются шкалы Фаренгейта, Цельсия и Кельвина.

Температурная шкала Фаренгейта наиболее популярна в США. Измеряется температура в градусах, например, 48,2°F(сорок восемь и два градуса по Фаренгейту), символ F указывает, что используется шкала Фаренгейта.

Европейцы привыкли к температурной шкале Цельсия. которая измеряет температуру также в градусах, например, 48,2°C (сорок восемь и два градуса по Цельсию), символ С указывает, что используется шкала Цельсия.

Ученым более привычно оперировать с температурной шкалой Кельвина. До 1968 года кельвин официально именовался градусом Кельвина, потом было принято решение именовать значение температуры, измеренной по шкале Кельвина, просто в кельвинах (без градусов), например, 48,2 К (сорок восемь и два кельвина).

Даниель Габриель Фаренгейт свою шкалу изобрел в 18 веке, занимаясь изготовлением термометров в Амстердаме. За нулевую точку температуры Фаренгейт взял температуру замороженного раствора соли, который в то время использовался для получения низких температур в лабораторных условиях. Значение в 32°F немецкий физик установил для температуры плавления льда и замораживания воды (при повышении и понижении температуры соответственно). В соответствии с полученной шкалой, температура закипания воды равна 212°F.

В том же 18 веке шведский ученый Андерс Цельсий изобрел свою температурную шкалу, в основе которой лежит температура замерзания (0°C) и закипания (100°C) чистой воды при нормальном атмосферном давлении.

Шкала Кельвина была изобретена в 19 веке британским ученым Уильямом Томсоном. который впоследствии получил почетный титул барона Кельвина. В основу своей температурной шкалы Томсон положил понятие абсолютного нуля. Позднее шкала Кельвина стала основной в физике, и сейчас через нее определяются системы Фаренгейта и Цельсия.

По своей сути температура любого объекта характеризует меру движения его молекул — чем быстрее движутся молекулы, тем выше температура объекта, и наоборот. Чем ниже температура, тем молекулы движутся медленнее. При абсолютном нуле (0 К) молекулы останавливаются (чего в природе быть не может). По этой причине, достичь температуры абсолютного нуля или еще более низких температур невозможно.

Надо сказать, что градуировка шкал Кельвина и Цельсия совпадают (один градус Цельсия равен одному кельвину), а 0 К = -273,15°C.

Таким образом, связать температурные шкалы Кельвина и Цельсия очень просто:

Попробуем связать шкалы Цельсия и Фаренгейта.

Как известно, вода замерзает при 32°F и 0°C: 32°F=09deg;C. Закипает вода при 212°F и 100°C: 212°F=1009deg;C .

Таким образом, на 180 градусов шкалы Фаренгейта приходится 100 градусов шкалы Цельсия (соотношение 9/5): 212°F-329deg;F=1009deg;C-09deg;C.

Также следует учесть, что нулевая точка шкалы Цельсия соответствует 32-градусной точке шкалы Фаренгейта.

Учитывая вышеизложенные соответствия двух шкал, выводим формулу перевода температуры из одной шкалы в другую:

Если решить данную систему уравнений, можно узнать, что -40°C = -40°F — это единственная температура, при которой значение обеих шкал совпадают.

Действуя аналогичным образом, связываем шкалы Кельвина и Фаренгейта:

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки: Просто о сложном

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t1 и t2 . представляющие собой температуры фазового равновесия чистых веществ. Разность температур t1 –t2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

где а и b — постоянные коэффициенты.

Подставив в уравнение (14.27) V=V1 при t=t1 и V=V2 при t=t2 . после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t1 соответствовали +32, 0 и 0 °, а точке кипения воды t2 212, 80 и 100 °. Основной интервал t2 –t1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта — t °F. градусом Реомюра – t °R и градусом Цельсия—t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток — масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал — условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя ТН и холодильника ТX и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

где QН и QX — соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

Следовательно, используя один объект в качестве нагревателя, а другой — в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды ТКВ и таяния льда ТТЛ . равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через QКВ и QТЛ и приняв ТКВ – ТТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

Для любой температуры Т нагревателя при неизменном значении температуры ТТЛ холодильника и количества теплоты QТЛ . отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q. полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю ТX . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро — давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное — . то давление газа Pt станет равным нулю. Естественно предположить, что температура . при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .

Из закона Бойля—Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0—100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки — wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин—1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т— 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х—Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х—Х, будет соответствовать давлению газа Р в баллоне.

Температурные шкалы

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T0 . при которой давление газа в баллоне будет Ро. Искомая температура вычисляется по формуле (14.35)

Газовые термометры используют в интервале

2 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 — 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП—68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ—68 снабжаются индексом (T68 или t68 ).

МПТШ—68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от — 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С — точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ—68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 — Основные реперные точки МПТШ—68

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *