Строение и функции клеточной оболочки

Строение и функции клеточной оболочки

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию. Размеры клеток достаточно широко варьируют, у человека, например, от нескольких микрометров (малые лимфоциты – 7 мкм) до 100 мкм (яйцеклетка). В среднем диаметр животных клеток равен приблизительно 20 а растительных – 40 мкм. Состоит эукариотическая клетка из трех основных частей – клеточной оболочки, цитоплазмы и ядра .

Клеточная оболочка состоит из двух слоев – плазмалеммы и наружного слоя. Плазмалемма прилегает к цитоплазме и ограничивает содержимое эукариотической клетки. Над мембраной формируется наружный слой. в животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке – толстый, называется клеточной стенкой (образован целлюлозой), в грибной клеточная стенка образована хитином. в прокариотической клетке – муреином .

Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды – триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот – гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки – наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.).

Строение и функции клеточной оболочки Рис. Строение плазмалеммы

Различают периферические белки( расположены на наружной или внутренней поверхности липидного бислоя), полуинтегральные белки( погружены в липидный бислой на различную глубину) и интегральные. или трансмембранные белки( пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими или канальными. так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины ) или липидов (гликолипиды ). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины, липопротеины и гликолипиды образуют надмембранный комплекс – гликокаликс. имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны – примерно 7,5 нм.

Строение и функции клеточной оболочки Рис. Движение катионов по электрохимическому градиенту

Функции оболочки. Плазмалемма с гликокаликсом выполняют множество функций – отделяют клеточное содержимое от внешней среды, регулируют обмен веществ между клеткой и средой, место локализации различных «ферментативных конвейеров», обеспечивают связь между клетками в тканях многоклеточных организмов (адгезия), рецепторная функция связана с распознаванием сигналов.

Важнейшее свойство мембран – избирательная проницаемость. то есть мембраны хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство регуляции обмена веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают пассивный транспорт – процесс прохождения веществ, идущий без затрат энергии и активный транспорт процесс прохождения веществ, идущий с затратами энергии.

Строение и функции клеточной оболочки Рис. Плазмолиз и деплазмолиз в растительной клетке

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией. перемещения молекул растворителя – осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент — разность зарядов. Наружная сторона мембраны заряжена положительно, внутренняя – отрицательно, что влияет на движение через мембрану катионов и анионов. Поэтому часто говорят об электрохимическом градиенте. объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Различают несколько видов пассивного транспорта: простую диффузию, диффузию через белковые каналы и облегченную диффузию. Простая диффузия – диффузия веществ непосредственно через липидный бислой (диффузия молекул жирорастворимых веществ, кислорода, углекислого газа, воды).Ионы Na +. K +. Ca 2+. Cl — проходят через мембрану через каналообразующие белки – это диффузия через мембранные каналы. Облегченная диффузия – транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды).

Транспорт молекул растворителя – воды (во всех биологических системах растворителем является именно вода) называется осмосом. Классическим примером осмоса (движения молекул воды через мембрану) являются явления плазмолиза и деплазмолиза. При добавлении 10% раствора поваренной соли к препарату кожицы лука наблюдается плазмолиз ионы Na + и Сl — вызывают выход воды из протопласта клетки и отставание протопласта от клеточной стенки. При удалении раствора соли и добавлении воды идет обратный процесс – деплазмолиз.

Строение и функции клеточной оболочки Рис. Виды транспорта через мембрану: 1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Необходимость активного транспорта возникает тогда, когда необходимо обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Примером активного транспорта является работа Na + /К + -насоса (натрий-калиевого насоса), фагоцитоз и пиноцитоз.

Работа Na + /К + -насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов «К + » и «Na + » в цитоплазме и во внешней среде. Концентрация «К + » внутри клетки должна быть значительно выше, чем за ее пределами, а «Na + » – наоборот. Следует отметить, что «Na + » и «К + » могут свободно диффундировать через мембранные каналы. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает «Na + » из клетки (против концентрационного и электростатичекого градиентов), а «K + » в клетку (против концентрационного, но по электростатическому градиенту).

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ». За один цикл работы насос выводит из клетки три «Na + »и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Эндоцитоз – процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: фагоцитоз захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз – захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И.Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз – процесс обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших – непереваренные остатки пищи.

Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы – основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки – постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль ) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь – более жидкая гиалоплазма и гель – более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот. Цитоплазма объединяет все компоненты клетки в единую систему, среда для прохождения многих биохимических и физиологических процессов, среда для существования и функционирования органоидов.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Строение и функции клеточной оболочки

Лекция 54. История создания клеточной теории. Клеточная оболочка. Цитоплазма

Создание и основные положения клеточной теории. Клеточная теория – важнейшее биологическое обобщение, согласно которому все живые организмы состоят из клеток. Изучение клеток стало возможным после изобретения микроскопа. В 1590 году Янсен изобрел микроскоп, в котором увеличение обеспечивалось соединением двух линз.

Впервые клеточное строение у растений (срез пробки) обнаружил английский ученый, физик Р.Гук, он же предложил термин «клетка9quot; (1665 г.). Голландский ученый Антони ван Левенгук впервые описал эритроциты позвоночных, сперматозоиды, разнообразные микроструктуры растительных и животных клеток, различные одноклеточные организмы, в том числе бактерии.

В 1831 г. англичанин Р.Броун обнаружил в клетках ядро. В 1838 г. немецкий ботаник М.Шлейден пришел к выводу, что ткани растений состоят из клеток и что в любой растительной клетке есть ядро. Немецкий зоолог Т.Шванн показал, что из клеток состоят и ткани животных. В 1839 г. вышла книга Т.Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений, в которой он доказывает, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Основные положения клеточной теории Т. Шванна можно сформулировать следующим образом.

1) Клетка – элементарная структурная единица строения всех живых существ.

2) Клетки растений и животных самостоятельны, гомологичны друг другу по происхождению и структуре. М.Шдейден и Т.Шванн ошибочно считали, что главная роль в клетке принадлежит оболочке и новые клетки образуются из межклеточного бесструктурного вещества. В дальнейшем в клеточную теорию были внесены уточнения и дополнения, сделанными другими учеными.

Еще в 1827 г. академик Российской АН К.М.Бэр, открыв яйцеклетки млекопитающих, установил, что все организмы начинают свое развитие с одной клетки, представляющей собой оплодотворенное яйцо. Это открытие показало, что клетка является не только единицей строения, но и единицей развития всех живых организмов.

В 1855 г. немецкий врач Р.Вирхов приходит к выводу, что клетка может возникнуть только из предшествующей клетки.

На современном уровне развития биологии основные положения клеточной теории можно представить следующим образом.

1. Клетка – элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов.

2. Клетки всех живых организмов сходны (гомологичны) по строению и химическому составу.

3. Новые клетки возникают только путем деления ранее существовавших клеток.

4. Клетка может быть самостоятельным организмом, осуществляющим всю полноту процессов жизнедеятельности (прокариоты и одноклеточные эукариоты). Все многоклеточные организмы состоят из клеток. Рост и развитие многоклеточного организма – следствие роста и размножения одной или нескольких исходных клеток Многоклеточные организмы представляют собой ассоциации специализированных клеток, объединенных в целостные системы, которые регулируются нервными и гуморальными механизмами.

  1. Клеточная организация возникла на заре жизни и прошла длительный путь эволюционного развития от безъядерных форм (прокариот) к ядерным (эукариотам).

6. Клеточное строение организмов – доказательство единства происхождения всего живого.

Изучения клеток осуществляется с помощью различных методов: – световой и электронной микроскопии, дифференциального ультрацентрифугирования, рентгеноструктурного анализа, хроматографии, электрофореза, микрохирургии, метода культуры клеток, метода радиоактивных изотопов и др.

Строение и функции клеточной оболочки

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию. Размеры клеток достаточно широко варьируют, у человека, например, от нескольких микрометров (малые лимфоциты – 7 мкм) до 100 мкм (яйцеклетка). В среднем диаметр животных клеток равен приблизительно 20 а растительных – 40 мкм. Состоит эукариотическая клетка из трех основных частей – клеточной оболочки, цитоплазмы и ядра .

Клеточная оболочка состоит из двух слоев – плазмалеммы и наружного слоя. Плазмалемма прилегает к цитоплазме и ограничивает содержимое эукариотической клетки. Над мембраной формируется наружный слой. в животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке – толстый, называется клеточной стенкой (образован целлюлозой), в грибной клеточная стенка образована хитином. в прокариотической клетке – муреином .

Строение мембран. Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды – триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот – гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки – наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.).

Строение и функции клеточной оболочки Рис. Строение плазмалеммы

Различают периферические белки( расположены на наружной или внутренней поверхности липидного бислоя), полуинтегральные белки( погружены в липидный бислой на различную глубину) и интегральные. или трансмембранные белки( пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими или канальными. так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины ) или липидов (гликолипиды ). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины, липопротеины и гликолипиды образуют надмембранный комплекс – гликокаликс. имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны – примерно 7,5 нм.

Строение и функции клеточной оболочки Рис. Движение катионов по электрохимическому градиенту

Функции оболочки. Плазмалемма с гликокаликсом выполняют множество функций – отделяют клеточное содержимое от внешней среды, регулируют обмен веществ между клеткой и средой, место локализации различных «ферментативных конвейеров», обеспечивают связь между клетками в тканях многоклеточных организмов (адгезия), рецепторная функция связана с распознаванием сигналов.

Важнейшее свойство мембран – избирательная проницаемость. то есть мембраны хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство регуляции обмена веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают пассивный транспорт – процесс прохождения веществ, идущий без затрат энергии и активный транспорт процесс прохождения веществ, идущий с затратами энергии.

Строение и функции клеточной оболочки Рис. Плазмолиз и деплазмолиз в растительной клетке

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией. перемещения молекул растворителя – осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент — разность зарядов. Наружная сторона мембраны заряжена положительно, внутренняя – отрицательно, что влияет на движение через мембрану катионов и анионов. Поэтому часто говорят об электрохимическом градиенте. объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Различают несколько видов пассивного транспорта: простую диффузию – диффузию веществ непосредственно через липидный бислой (кислород, углекислый газ); диффузию через мембранные каналы – транспорт через каналообразующие белки (Na +. K +. Ca 2+. Cl — ); облегченную диффузию – транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды) и осмос – транспорт молекул растворителя – воды (во всех биологических системах растворителем является именно вода).

Классическим примером осмоса (движения воды через мембрану) являются явления плазмолиза и деплазмолиза. При добавлении 10% раствора поваренной соли к препарату кожицы лука наблюдается плазмолиз ионы Na + и Сl — вызывают выход воды из протопласта клетки и отставание протопласта от клеточной стенки. При удалении раствора соли и добавлении воды идет обратный процесс – деплазмолиз.

Строение и функции клеточной оболочки Рис. Виды транспорта через мембрану: 1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Необходимость активного транспорта возникает тогда, когда необходимо обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Примером активного транспорта является работа Na + /К + -насоса (натрий-калиевого насоса), фагоцитоз и пиноцитоз.

Работа Na + /К + -насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов «К + » и «Na + » в цитоплазме и во внешней среде. Концентрация «К + » внутри клетки должна быть значительно выше, чем за ее пределами, а «Na + » – наоборот. Следует отметить, что «Na + » и «К + » могут свободно диффундировать через мембранные каналы. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает «Na + » из клетки (против концентрационного и электростатичекого градиентов), а «K + » в клетку (против концентрационного, но по электростатическому градиенту).

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ». За один цикл работы насос выводит из клетки три «Na + »и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Эндоцитоз – процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: фагоцитоз захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз – захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И.Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз – процесс обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших – непереваренные остатки пищи.

Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы – основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки – постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль ) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь – более жидкая гиалоплазма и гель – более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот. Цитоплазма объединяет все компоненты клетки в единую систему, среда для прохождения многих биохимических и физиологических процессов, среда для существования и функционирования органоидов.

Все клетки состоят из трех основных частей:

  1. клеточной оболочки (ограничивает клетку от окружающей среды);
  2. цитоплазмы (составляет внутреннее содержимое клетки);
  3. ядра (у прокариот — нуклеоид) — содержит генетический материал клетки.

Строение клеточной оболочки

Основу клеточной оболочки составляет плазматическая мембрана (наружная клеточная мембрана, плазмолемма) — биологическая мембрана, ограничивающая внутренние содержимое клетки от внешней среды.

Все биологические мембраны представляют собой двойной слой липидов, гидрофобные концы которых обращены внутрь, а гидрофильные головки — наружу.

Кроме липидов в состав мембраны входят белки: периферические, погруженные (полуинтегральные) и пронизывающие (интегральные). Периферические белки прилегают к билипидному слою с внутренней или внешней стороны, полуинтегральные — частично встроены в мембрану, интегральные — проходят через всю толщу мембраны. Белки способны перемещаться в плоскости мембраны.

Мембранные белки выполняют различные функции: транспорт различных молекул; получение и преобразование сигналов из окружающей среды; поддержание структуры мембран. Наиболее важное свойство мембран — избирательная проницаемость .

Плазматические мембраны животных клеток имеют снаружи слой гликокаликса. состоящий из гликопротеинов и гликолипидов и выполняющий сигнальную и рецепторную функции. Он играет важную роль в объединении клеток в ткани.

Плазматические мембраны растительных клеток покрыты клеточной стенкой из целлюлозы. Поры в стенке позволяют пропускать воду и небольшие молекулы, а жесткость обеспечивает клетке механическую опору и защиту.

Функции клеточной оболочки

Клеточная оболочка выполняет следующие функции:

  • определяет и поддерживает форму клетки;
  • защищает клетку от механических воздействий и проникновения повреждающих биологических агентов;
  • отграничивает внутреннее содержимое клетки;
  • регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава;
  • осуществляет узнавание многих молекулярных сигналов (например, гормонов);
  • участвует в формировании межклеточных контактов и различного рода специфических выпячиваний цитоплазмы (ресничек, жгутиков).

Механизмы проникновения веществ в клетку

Между клеткой и окружающей средой постоянно происходит обмен веществ. Ионы и небольшие молекулы транспортируются через мембрану путем пассивного или активного транспорта, макромолекулы и крупные частицы — путем эндо- и экзоцитоза.

Способы переноса веществ через плазматическую мембрану

6.Происхождение, строение и функции клеточной оболочки.

История открытия клетки, клеточная теория. Клетка — основная структурная единица живого. Открытие ее (Гук,1665; Мальпиги; Грю, 1671) связано с изобретением светового микроскопа. Дальнейшие исследования Р. Вирхова, К. Бэра показали, что организмы начинают свое развитие из одной клетки, каждая клетка образуется путем деления материнской. Это нашло свое выражение в клеточной теории, основные поло­жения которой сформулированы французским ботаником Дютроше (1824), русским ботаником Горяниновым П.Ф.(1834) и немецкими исследователями Шлейденом и Шванном (1838-1839).

Современная клеточная теория включает следующие основные положения:

1 .Клетка — основная единица строения, развития и жизнедеятельности живых организмов.

2. Клетки растений и животных сходны по строению.

3. Клетки образуются в результате деления материнских кле­ток.

4. Клетки специализированы по функциям и образуют ткани.

5. Ткани формируют органы.

Более глубокие представления о строении клетки связаны с появлением фазово-контрастного, электронного, трансмиссионного и сканирующего микро­скопов, которые обеспечивают увеличение в сотни тысяч раз.

Строение клетки. Основными структурными частями клетки являются: оболочка, цитоплазма, ядро, вакуоль. Живая часть клетки (цитоплазма, ядро) называется протопла­стом.

Клеточная оболочка. Клетки растений окружены плотной оболочкой. На­личием ее они отличаются от клеток животных, хотя установлено, что и клетки животных покрыты оболочкой гликопротеидного вещества муцина (сахар и белок) — яйца морских ежей, амфибий, клетки, выстилающие желудочно-кишечный тракт, эпителий и др.

Клеточная оболочка защищает протопласт от неблагоприятных внешних воздействий и придает клетке определенную форму и прочность.

Клеточная оболочка состоит главным образом из полисахаридов — целлюло­зы 50%, гемицеллюлозы 30% и пектиновых веществ 20%.

Целлюлоза имеет фибриллярное строение. Глюкозные остатки в молекуле целлюлозы образуют цепи — мицеллы, которые объединяются в пучки. Мелкие пучки в крупные и т.д.

Чистая целлюлоза бесцветна, прочна и стойка против различного рода ме­ханических и физических воздействий. Промежутки между пучками мицелл заполнены пектиновыми веществами, способными при намачивании набухать. Пектиновые вещества заполняют и межклеточные пространства, склеивая клетки между со­бой. Часто на стенках клеток откладывается не целлюлоза, а гемицеллюлоза, вещество, стоящее ближе к крахмалу.

Утолщение клеточных оболочек происходит в основном за счет пропитыва­ния их особыми веществами, обеспечивающими дополнительную прочность и стойкость. Это лигнин, суберин, кутин. Лигнин — вещество, близкое к целлю­лозе, но углерода в нем относительно больше. Такое видоизменение — одревеснение.

Суберин и кутин по своей природе близки к жирам. Клеточные оболочки, пропитанные ими, не смачиваются водой и почти непроницаемы для воды и газов. Это уменьшает испарение с поверхности клеток. Кутикулой покрыва­ется только наружная поверхность клеточных оболочек (поверхность листа), поэтому клетки сохраняют свою жизнеспособность. Сквозное пропитывание этими веществами клеточной оболочки приводит к опробковению, что вызы­вает отмирание протопласта клетки.

Минерализация оболочек отмечена в небольшой степени у всех клеток. Обычно это бывают соли кальция или кремниевой кислоты. Кальций встреча­ется в виде углекислой или щавелевокислой извести. Углекислая известь мо­жет откладываться не только в оболочках, но на поверхности эпидермы, осаждаясь из выделений водных устьиц (в жгучих во­лосках крапивы вместе с кремнеземом).

Формирование и рост клеточной оболочки. Образовавшаяся в процессе деления клеток общая для них перегородка представляет собой тончайшую пленку из целлюлозы. В нее даже проникают части­цы цитоплазмы протопластов соседних клеток. Эта тонкая целлюлозная пленка называется первичной оболочкой, содержит около 5% целлюло­зы. Вначале первичная оболочка общая для двух соседних клеток. Затем она утолщается и разделяется, и каждая клетка получает свою первичную оболочку. Между ними возникает тончайший слой аморфного вещества — межклеточная или срединная пластинка. По физическим и химическим свойствам она имеет пектиновую природу. Она может разрушаться, и соседние клетки разъединяют­ся. По мере роста молодых клеток увеличивается и первичная оболочка, стано­вится толще.

Вначале, у очень молодых клеток мицеллярные тяжи образуют трехмерную сетку. Она легко растягивается. По мере роста клетки, оболочка растягивается, к уже имеющимся пучкам мицелл присоединяются новые. Сетка становится более плотной и тесной. Общая толщина ее растет. Пластичность оболочки снижается, и закрепляется определенный размер и форма клетки. После­дующее утолщение клеточной оболочки называется вторичным, а наслаи­вающаяся оболочка называется вторичной оболочкой. Такова схематично сложная морфологическая структура клеточной оболочки. Сложность эта усу­губляется еще тем, что вторичное утолщение никогда не бывает сплошным, равномерным, а бывает самым разнообразным: кольчатым, спиральным, лесничным, сетчатым, точечным.

Кольчатые и спиральные утолщения представляют собой кольца или спира­ли круглого сечения, расположенные внутри клетки, имеющей форму цилин­дрической трубки. Они соединены с внутренней поверхностью первичной оболочки лишь узкой спайкой, не препятствуют удлинению клеток, росту их в длину.

Утолщения могут быть в виде сетки на внутренней поверхности клеточной оболочки, и в виде ступенек, вдающихся внутрь клетки, и почти сплошное. В последнем случае остаются не утолщенными лишь узкие пространства округ­лой или щелевидной формы.

В первичной оболочке имеются не утолщенные места — поры. В связи с раз­личным характером утолщений, форма и конструкция пор может быть самой разнообразной:

Простые поры — у них стенки канала, образуемого вторичной оболочкой, опускаются к первичной оболочке ровно, отвесно.

Полуокаймленные — вторичная оболочка с одной стороны.

Окаймленные поры — вторичная оболочка как бы нависает над не утолщен­ным местом так, что канал во вторичной оболочке приобретает форму воронки, приставленной раструбом к первичной оболочке. Пленка первичной оболочки, разгораживающая в поре два встречных канала, может иметь утол­щение в виде диска или линзы, которое называется торусом.

Очертания как простой, так и окаймленной поры не всегда округлое, оно может быть вытянутым, эллиптическим. Первичная оболочка в области пор пронизана тончайшими отверстиями-перфорациями, через которые проходят тяжи цитоплазмы-плазмодесмы, соединяющие клетки и обеспечивающие жизнедеятельность растения как целостного организма.

Видоизменения клеточной оболочки :

одревеснение – инкрустация лигнином;

опробковение – инкрустация суберином;

кутинизация – образование слоя кутина на внешней поверхности оболочки;

минерализация – пропитывание солями кальция или кремния.

Ослизнение клеточных оболочек. Может быть нормальное (биологическое), полезное для растений и патологическое (болезненное), вызываемое бактерия­ми.

Нормальное ослизнение целлюлозных оболочек поверхностного слоя клеток семян льна, айвы, тыквы, некоторых видов ромашки способствует закрепле­нию семян в почве, создается лучший контакт с ней и лучшие условия произрастания.

В патологических случаях могут ослизняться стенки не только поверхност­ных, но и глубинных клеток. Этот процесс вызывается специальными бакте­риями, является болезнью растений и называется гуммозом. Часто поражает плодовые деревья, особенно вишни, сливы. Из коры дерева вытекает слизь, вишневый клей. Гуммоз развивается медленно и в конечном счете приводит к гибели дерева.

Клеточная оболочка отсутствует у кого? Строение и функции клеточной оболочки

Строение и функции клеточной оболочки

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Строение и функции клеточной оболочки

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Строение и функции клеточной оболочки

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Строение и функции клеточной оболочки

13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

Строение и функции клеточной оболочки

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Строение и функции клеточной оболочки

5 привычек, которые гарантируют, что вы не достигните успеха в жизни Наши ежедневные привычки делают из нас тех, кем мы являемся. Какие-то из них способны привести нас к успеху, а другие, напротив, гарантируют неизбежны.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *