Суммарное уравнение фотосинтеза

Суммарное уравнение фотосинтеза

Фотосинтез – это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений.

Процесс фотосинтеза выражают суммарным уравнением:

На свету в зеленом растении из предельно окисленных веществ — диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО2. но и нитраты или сульфаты, а энергия может быть направлена на различные эндэргонические процессы, в том числе на транспорт веществ.

Общее уравнение фотосинтеза может быть представлено в виде:

12 Н2 О &#85&4; 12 [Н2 ] + 6 О2 (световая реакция)

или в расчете на 1 моль СО2 :

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО2. Методами меченых атомов было получено, что Н2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н2 О, а не разложении СО2. Способные к фотосинтетической ассимиляции СО2 бактерии (кроме цианобактерий) используют в качестве восстановителей Н2 S, Н2. СН3 и другие, и не выделяют О2. Такой тип фотосинтеза называется фоторедукцией:

где Н2 А – окисляет субстрат, донор водорода (у высших растений – это Н2 О), а 2А – это О2. Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО2. а [ОН] участвует в реакциях освобождения О2 и образования Н2 О.

Солнечная энергия при участии зеленых растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (&#&16;μH + ),энергия фосфатных свя­зей АТФ и других макроэргических соединений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии могут быть использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, т.е. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет «космическую» роль зеленых растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции — от 10 -15 с (в фемтосекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, может быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 — 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия — фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента (П(РЦ) ) реакционного центра используется для разделения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделенными зарядами (П(РЦ) — А) содержит определенное количество энер­гии уже в химической форме. Окисленный пигмент П(РЦ) восстанавливает свою структуру за счет окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. В настоящее время молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П *. А — ) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. Поэтому необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

III стадия — реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Еn) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех основных функциональных ком­плексов — фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФДвосст ) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО2. составляющих IV стадию фотосинтеза.

IV стадия — «темновые» реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в «световых» реакциях фотосинтеза. Скорость «темновых» энзиматических реакций – 10 -2 — 10 4 с.

Таким образом, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков — потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Фотосинтез. Общее уравнение фотосинтеза

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез – процесс, при котором происходит поглощение электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращение её в химическую энергию, поглощение углекислого газа из атмосферы, восстановление его в органические соединения и возвращение кислорода в атмосферу.

В процессе фотосинтеза из простых неорганических соединений (СО2. Н2 О) строятся различные органические соединения. В результате происходит перестройка химических связей: вместо связей С – О и Н – О возникают связи C – C и C – H, в которых электроны занимают более высокий энергетический уровень. Таким образом, богатые энергией органические вещества, которыми питаются и за счет которых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С02. из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, — это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты — это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины .

К группе хлорофиллов относят органические соединения, которые содержат 4 пиррольных кольца, соединённых атомами магния и имеющие зелёную окраску.

В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d — в красных водорослях.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий. Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872—1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде.

Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком — мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b — желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

Каротиноиды — это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротинойды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента — каротин (оранжевый) и ксантофилл (желтый). В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Фикобилины — красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и цианобактерий наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки.

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин — это окисленный фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495— 565 нм, а фикоцианин — 550— 615 нм. Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления организмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

Все хлорофиллы являются магниевыми солями пиррола. В центре молекулы хлорофилла находятся магний и четыре пиррольных кольца, соединенные друг с другом метановыми мостиками.

По химическому строению хлорофиллы — сложные эфиры дикарбоновой органической кислоты — хлорофиллина и двух остатков спиртов — фитола и метилового.

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех пиррольных пятичленных колец, соединенных между собой углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо, которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл в отличается от хлорофилла а только тем, что вместо метальной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилла имеет сине-зеленую окраску, а хлорофилл в — светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через хлорофилл а.

Флуоресценция — это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины — волны возбуждающего света. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску — это явление флуоресценции.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.

Суммарная реакция фотосинтеза

Фотосинтез – 2 группы реакций:

· световая стадия (зависят отосвещенности)

· темновая стадия (зависит от температуры).

Обе группы реакций протекают одновременно

Фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений.

Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы. Суммарное уравнение фотосинтеза

Молекула хлорофилла поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра.

Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

Суммарное уравнение фотосинтеза

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов.

Пигменты организованы в фотосистемы (антенные поля по улавливанию света) – содержащие по 250–400 молекул разных пигментов.

· реакционного центра фотосистемы (молекула хлорофилла а),

Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

· фотосистема 1 (максимум поглощения света на длине волны 700 нм — Р700)

· фотосистема 2 (максимум поглощения света на длине волны 680 нм — Р680

Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.

Две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием .

Суммарное уравнение для нециклического фотофосфорилирования :

Суммарное уравнение фотосинтеза

Ф — условное обозначение остатка фосфорной кислоты

Суммарное уравнение фотосинтеза

Суммарное уравнение фотосинтеза

Фотосинтез – это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений.

Процесс фотосинтеза выражают суммарным уравнением:

На свету в зеленом растении из предельно окисленных веществ — диокси­да углерода и воды образуются органические вещества, и высво­бождается молекулярный кислород. В процессе фотосинтеза восстанавливаются не только СО2. но и нитраты или сульфаты, а энергия может быть направлена на различные эндэргонические процессы, в том числе на транспорт веществ.

Общее уравнение фотосинтеза может быть представлено в виде:

12 Н2 О &#85&4; 12 [Н2 ] + 6 О2 (световая реакция)

или в расчете на 1 моль СО2 :

Весь кислород, выделяемый при фотосинтезе, происходит из воды. Вода в правой части уравнения не подлежит сокращению, так как ее кислород происходит из СО2. Методами меченых атомов было получено, что Н2 О в хлоропластах неоднородна и состоит из воды, поступающей из внешней среды и воды, образовавшейся в процессе фотосинтеза. В процессе фотосинтеза используются оба типа воды. Доказательством образования О2 в процессе фотосинтеза служат работы голландского микробиолога Ван Ниля, который изучал бактериальный фотосинтез, и пришел к выводу, что первичная фотохимическая реакция фотосинтеза состоит в диссоциации Н2 О, а не разложении СО2. Способные к фотосинтетической ассимиляции СО2 бактерии (кроме цианобактерий) используют в качестве восстановителей Н2 S, Н2. СН3 и другие, и не выделяют О2. Такой тип фотосинтеза называется фоторедукцией:

где Н2 А – окисляет субстрат, донор водорода (у высших растений – это Н2 О), а 2А – это О2. Тогда первичным фотохимическим актом в фотосинтезе растений должно быть разложение воды на окислитель [ОН] и восстановитель [Н]. [Н] восстанавливает СО2. а [ОН] участвует в реакциях освобождения О2 и образования Н2 О.

Солнечная энергия при участии зеленых растений и фотосинтезирующих бактерий преобразуется в свободную энергию органических соединений. Для осуществления этого уникального процесса в ходе эволюции был создан фо­тосинтетический аппарат, содержащий: I) набор фотоактивных пигментов, способных поглощать электромагнитное излучение определенных областей спектра и запасать эту энергию в виде энергии электронного возбуждения, и 2) специальный аппарат преобразования энергии электронного возбуждения в разные формы химической энергии. Прежде всего эторедокс-энергия, свя­занная с образованием высоковосстановленных соединений, энергия электрохимического потенциала, обусловленная образованием электрических и про­тонных градиентов на сопрягающей мембране (&#&16;μH + ),энергия фосфатных свя­зей АТФ и других макроэргических соединений, которая затем преобразуется в свободную энергию органических молекул.

Все эти виды химической энергии могут быть использованы в процессе жизнедеятельности для поглощения и трансмембранного переноса ионов и в большинстве реакций метаболизма, т.е. в конструктивном обмене.

Способность использовать солнечную энергию и вводить ее в биосферные процессы и определяет «космическую» роль зеленых растений, о которой писал великий русский физиологК.А. Тимирязев.

Процесс фотосинтеза представляет собой очень сложную систему по про­странственной и временной организации. Использование высокоскоростных методов импульсного анализа позволили установить, что процесс фотосинте­за включает различные по скорости реакции — от 10 -15 с (в фемтосекундном интервале времени протекают процессы поглощения и миграции энергии) до 10 4 с (образование продуктов фотосинтеза). Фотосинтетический аппарат вклю­чает структуры с размерами от 10 -27 м 3 на низшем молекулярном уровне до 10 5 м 3 на уровне посевов.

Принципиальная схема фотосинтеза. Весь сложный комплекс реакций, со­ставляющих процесс фотосинтеза, может быть представлен принципиальной схемой, в которой отображены основные стадии фотосинтеза и их сущность. В современной схеме фотосинтеза можно выделить четыре стадии, которые различаются по природе и скорости реакций, а также по значению и сущно­сти процессов, происходящих на каждой стадии:

* – ССК – светособирающий антенный комплекс фотосинтеза – набор фотосинтетических пигментов – хлорофиллов и каротиноидов; РЦ – реакционный центр фотосинтеза – димер хлорофилла а ; ЭТЦ – электрон-транспортная цепь фотосинтеза – локализована в мембранах тилакоидов хлоропластов (сопряженные мембраны), включает хиноны, цитохромы, железосерные кластерные белки и другие переносчики электронов.

I стадия – физическая. Включает фотофизические по природе реакции поглощения энергии пигментами (П), запасания ее в виде энергии электрон­ного возбуждения (П*) и миграции в реакционный центр (РЦ). Все реакции чрезвычайно быстрые и протекают со скоростью 10 -15 — 10 -9 с. Первичные ре­акции поглощения энергии локализованы в светособирающих антенных комп­лексах (ССК).

II стадия — фотохимическая. Реакции локализованы в реакционных цент­рах и протекают со скоростью 10 -9 с. На этой стадии фотосинтеза энергия элек­тронного возбуждения пигмента реакционного центра (П(РЦ) ) используется для разделения зарядов. При этом электрон с высоким энергетическим потен­циалом передается на первичный акцептор А, и образующаяся система с разделенными зарядами (П(РЦ) — А) содержит определенное количество энер­гии уже в химической форме. Окисленный пигмент П(РЦ) восстанавливает свою структуру за счет окисления донора (Д).

Происходящее в реакционном центре преобразование одного вида энергии в другой представляет собой центральное событие процесса фотосинтеза, требу­ющее жестких условий структурной организации системы. В настоящее время молекулярные модели реакционных центров растений и бактерий в основном известны. Установлено их сходство по структурной организации, что свидетель­ствует о высокой степени консервативности первичных процессов фотосинтеза.

Образующиеся на фотохимической стадии первичные продукты (П *. А — ) очень лабильны, и электрон может вернуться к окисленному пигменту П * (процесс рекомбинации) с бесполезной потерей энергии. Поэтому необходи­ма быстрая дальнейшая стабилизация образованных восстановленных продук­тов с высоким энергетическим потенциалом, что осуществляется на следу­ющей, III стадии фотосинтеза.

Суммарное уравнение фотосинтеза

III стадия — реакции транспорта электронов. Цепь переносчиков с раз­личной величиной окислительно-восстановительного потенциала (Еn) обра­зует так называемую электрон-транспортную цепь (ЭТЦ). Редокс-компоненты ЭТЦ организованы в хлоропластах в виде трех основных функциональных ком­плексов — фотосистемы I (ФСI), фотосистемы II (ФСII), цитохром b6 f -комп­лекса, что обеспечивает высокую скорость электронного потока и возмож­ность его регуляции. В результате работы ЭТЦ образуются высоковосстанов­ленные продукты: восстановленный ферредоксин (ФДвосст ) и НАДФН, а так­же богатые энергией молекулы АТФ, которые используются в темновых реак­циях восстановления СО2. составляющих IV стадию фотосинтеза.

IV стадия — «темновые» реакции поглощения и восстановления углекислоты. Реакции проходят с образованием углеводов, конечных продуктов фотосинте­за, в форме которых запасается солнечная энергия, поглощенная и преобразо­ванная в «световых» реакциях фотосинтеза. Скорость «темновых» энзиматических реакций – 10 -2 — 10 4 с.

Таким образом, весь ход фотосинтеза осуществляется при взаимодействии трех пото­ков — потока энергии, потока электронов и потока углерода. Сопряжение трех потоков требует четкой координации и регуляции составляющих их реакций.

Планетарная роль фотосинтеза

Фотосинтез, возникнув на первых этапах эволюции жизни, остается важнейшим процессом биосферы. Именно зеленые растения по­средством фотосинтеза обеспечивают космическую связь жизни на Земле с Вселенной и определяют экологическое благополучие биосферы вплоть до возможности существования человеческой цивилизации. Фотосинтез — это не только источник пищевых ресурсов и полезных ископаемых, но и фактор сбалансирован­ности биосферных процессов на Земле, включая постоянство содержания кислорода и диоксида углерода в атмосфере, состоя­ние озонового экрана, содержание гумуса в почве, парниковый эффект и т.д.

Глобальная чистая продуктивность фотосинтеза составляет 7–8·10 8 т углерода в год, из которых 7 % непосредственно исполь­зуют на питание, топливо и строительные материалы. В настоя­щее время потребление ископаемого топлива приблизительно сравнялось с образованием биомассы на планете. Ежегодно в ходе фотосинтеза в атмосферу поступает 70–120 млрд. т кисло­рода, обеспечивающего дыхание всех организмов. Одним из важ­нейших последствий выделения кислорода является образование озонового экрана в верхних слоях атмосферы на высоте 25 км. Озон (О3 ) образуется в результате фотодиссоциации молекул О2 под действием солнечной радиации и задерживает большую часть ультрафиолетовых лучей, губительно действующих на все живое.

Существенным фактором фотосинтеза является также стаби­лизация содержания СО2 в атмосфере. В настоящее время содер­жание СО2 составляет 0,03–0,04 % по объему воздуха, или 711 млрд. т в пересчете на углерод. Дыхание организмов, Мировой океан, в водах которого растворено в 60 раз больше СО2. чем находится в атмосфере, производственная деятельность людей, с одной сто­роны, фотосинтез — с другой, поддерживают относительно по­стоянный уровень СО2 в атмосфере. Диоксид углерода в атмо­сфере, а также вода поглощают инфракрасные лучи и сохраняют значительное количество теплоты на Земле, обеспечивая необхо­димые условия жизнедеятельности.

Однако за последние десятилетия из-за возрастающего сжига­ния человеком ископаемого топлива, вырубки лесов и разложе­ния гумуса сложилась ситуация, когда технический прогресс сде­лал баланс атмосферных явлений отрицательным. Положение усугубляется и демографическими проблемами: каждые сутки на Земле рождается 200 тыс. человек, которых нужно обеспечить жизненными ресурсами. Эти обстоятельства ставят изучение фо­тосинтеза во всех его проявлениях, от молекулярной организа­ции процесса до биосферных явлений, в ранг ведущих проблем современного естествознания. Важнейшие задачи — повышение фотосинтетической продуктивности сельскохозяйственных посе­вов и насаждений, а также создание эффективных биотехноло­гий фототрофных синтезов.

К.А. Тимирязев первым начал изучать космическую роль зеленых растений. Фотосинтез – это единственный процесс на Земле, идущий в грандиозных масштабах и связанный с превращением энергии солнечного света в энергию химических соединений. Эта космическая энергия, запасенная зелеными растениями, составляет основу жизнедеятельности всех других гетеротрофных организмов на Земле от бактерий до человека. Выделяют 5 основных аспектов космической и планетарной деятельности зеленых растений.

1. Накопление органической массы. В процессе фотосинтеза наземные растения образуют 100-172 млрд.т. биомассы в год (в пересчете на сухое вещество), а растения морей и океанов – 60-70 млрд.т. Общая масса растений на Земле в настоящее время составляет 2402,7 млрд.т. причем 90 % этой массы приходится на целлюлозу. Около 2402,5 млрд.т. приходится на долю наземных растений и 0,2 млрд.т. – на растения гидросферы (недостаток света!). Общая масса животных и микроорганизмов на Земле – 23 млрд.т. то есть 1 % от массы растений. Из этого количества

20 млрд.т. приходится на обитателей суши и

3 млрд.т. – на обитателей гидросферы. За время существования жизни на Земле органические остатки растений и животных накапливались и модифицировались (подстилка, гумус, торф, а в литосфере – каменный уголь; в морях и океанах – толща осадочных пород). При опускании в более глубокие области литосферы из этих остатков под действием микроорганизмов, повышенных температур и давления образовывались газ и нефть. Масса органических веществ подстилки

194 млрд.т.; торфа – 220 млрд.т.; гумуса

2500 млрд.т. Нефть и газ – 10000 – 12000 млрд.т. Содержание органического вещества в осадочных породах по углероду

2 · 10 16 т. Особенно интенсивное накопление органики происходило в палеозое (

300 млн. лет назад). Запасенное органическое вещество интенсивно используется человеком (древесина, полезные ископаемые).

2. Обеспечение постоянства содержания СО2 в атмосфере. Образование гумуса, осадочных пород, горючих полезных ископаемых выводили значительные количества СО2 из круговорота углерода. В атмосфере Земли становилось все меньше СО2 и в настоящее время его содержание составляет

0,03–0,04 % по объему или

711 млрд.т. в пересчете на углерод. В кайнозойскую эру содержание СО2 в атмосфере стабилизировалось и испытывало лишь суточные, сезонные и геохимические колебания (стабилизация растений на уровне современных). Стабилизация содержания СО2 в атмосфере достигается сбалансированным связыванием и освобождением СО2 в глобальном масштабе. Связывание СО2 в фотосинтезе и образование карбонатов (осадочные породы) компенсируется выделением СО2 за счет других процессов: Ежегодное поступление СО2 в атмосферу (в пересчете на углерод) обусловлено: дыханием растений –

10 млрд. т. дыханием и брожением микроорганизмов –

25 млрд.т.; дыханием человека и животных –

1,6 млрд.т. хозяйственной деятельностью людей

5 млрд.т.; геохимическими процессами

0,05 млрд.т. Итого

41,65 млрд.т. Если бы не происходило поступления СО2 в атмосферу, весь его наличный запас был бы связан за 6–7 лет Мощным резервом СО2 является Мировой океан, в его водах растворено в 60 раз больше СО2. чем его находится в атмосфере. Итак, фотосинтез, дыхание и карбонатная система океана поддерживает относительно постоянный уровень СО2 в атмосфере. За счет хозяйственной деятельности человека (сжигание горючих полезных ископаемых, вырубка лесов, разложение гумуса) содержание СО2 в атмосфере начало увеличиваться

на 0,23 % в год. Это обстоятельство может иметь глобальные последствия, так как содержание СО2 в атмосфере влияет на тепловой режим планеты.

3. Парниковый эффект. Поверхность Земли получает теплоту главным образом от Солнца. Часть этой теплоты возвращается в виде ИК лучей. СО2 и Н2 О, содержащиеся в атмосфере, поглощают ИК лучи и таким образом сохраняют значительное количество теплоты на Земле (парниковый эффект). Микроорганизмы и растения в процессе дыхания или брожения поставляют

85 % общего количества СО2. поступающего ежегодно в атмосферу и вследствие этого влияют на тепловой режим планеты. Тенденция повышения содержания СО2 в атмосфере может привести к увеличению средней температуры на поверхности Земли таяние ледников (горы и полярные льды) затопление прибрежных зон. Тем не менее, возможно, что повышение концентрации СО2 в атмосфере будет способствовать усилению фотосинтеза растений, что приведет к связыванию избыточных количеств СО2 .

4. Накопление О2 в атмосфере. Первоначально О2 присутствовал в атмосфере Земли в следовых количествах. В настоящее время он составляет

21 % по объему воздуха. Появление и накопление О2 в атмосфере связано с жизнедеятельностью зеленых растений. Ежегодно в атмосферу поступает

70–120 млрд.т. О2. образованного в фотосинтезе. Особую роль в этом играют леса: 1 га леса за 1 час дает О2. достаточно для дыхания 200 человек.

5. Образование озонового экрана на высоте

25 км. О3 образуется при диссоциации О2 под действием солнечной радиации. Слой О3 задерживает большую часть УФ (240-290 нм), губительного для живого. Разрушение озонового экрана планеты – одна из глобальных проблем современности.

Суммарное уравнение фотосинтеза

Фотосинтез

Фотосинтез — это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах.

Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С02. из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, — это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Основная роль фотосинтезирующих организмов:

1) трансформация энергии солнечного света в энергию химических связей органических соединений;

2) насыщение атмосферы кислородом;

В результате фотосинтеза на Земле образуется 150 млрд. т. органического веществаи выделяется около 200 млрд. т свободногокислородав год. Он препятствует увеличению концентрацииCO2в атмосфере, предотвращая перегрев Земли (парниковый эффект).

Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения (кислородно-озоновый экран атмосферы).

В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом

Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существования всего живого. Следовательно, роль фотосинтеза является планетарной.

Суммарное уравнение фотосинтеза

Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

Суммарная реакция фотосинтеза со2 +н2о = (сн2о) + о2.

Химию фотосинтеза описывают следующими уравнениями:

Суммарное уравнение фотосинтеза

Фотосинтез – 2 группы реакций:

световая стадия (зависят от освещенности)

темновая стадия (зависит от температуры).

Обе группы реакций протекают одновременно

Фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений.

Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы. Суммарное уравнение фотосинтеза

Молекула хлорофилла поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра.

Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

Суммарное уравнение фотосинтеза

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов.

Пигменты организованы в фотосистемы (антенные поля по улавливанию света) – содержащие по 250–400 молекул разных пигментов.

Фотосистема состоит из:

реакционного центра фотосистемы (молекула хлорофилла а),

Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

фотосистема 1 (максимум поглощения света на длине волны 700 нм — Р700)

фотосистема 2 (максимум поглощения света на длине волны 680 нм — Р680

Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.

Две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием.

Суммарное уравнение для нециклического фотофосфорилирования.

Суммарное уравнение фотосинтеза

Ф — условное обозначение остатка фосфорной кислоты

Суммарное уравнение фотосинтеза

Цикл начинается с фотосистемы 2.

1) антенные молекулы улавливают фотон и передают возбуждение молекуле активного центра Р680;

2) возбужденная молекула Р680 отдает два электрона кофактору Q при этом она окисляется и приобретает положительный заряд;

Кофактор (cofactor). Кофермент или любое другое вещество, необходимое для выполнения ферментом его функции

Коферменты (коэнзимы) [от лат. co (cum) — вместе и ферменты], органические соединения небелковой природы, участвующие в ферментативной реакции в качестве акцепторов отдельных атомов или атомных групп, отщепляемых ферментом от молекулы субстрата, т.е. для осуществления каталитического действия ферментов. Эти веществава, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны. Иногда под Коферментами подразумевают любые низкомолекулярные вещества, участие которых необходимо для проявления каталитического действия фермента, в т. ч. и ионы, напр. К +. Mg 2+ и Мn 2+. Располагаются оферменты. в активном центре фермента и вместе с субстратом и функциональными группами активного центра образуют активированный комплекс.

Для проявления каталитической активности большинству ферментов необходимо наличие кофермента. Исключение составляют гидролитические ферменты (например, протеазы, липазы, рибонуклеаза), выполняющие свою функцию в отсутствие кофермента.

Молекула восстанавливается Р680 (под действием ферментов). При этом вода диссоциирует на протоны и молекулярный кислород, т.е. вода является донором электронов, который обеспечивает восполнение электронов в Р680.

ФОТОЛИЗВОДЫ — расщепление молекулы воды, в частности в процессе фотосинтеза. Вследствие фотолиза воды образуется кислород, выделяющийся зелеными растениями на свету.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *