Теорема штейнера

Теорема Штейнера

Предположим, что мы умеем вычислять моменты инерции относительно любой оси, проходящей через центр масс. Теперь возникает задача вычисления момента инерции тела относительно произвольной оси. Она решается с помощью теоремы Штейнера.

Эта теорема утверждает, что момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

Для доказательства теоремы рассмотрим некую ось С. проходящую через центр масс и параллельную ей ось О. отстоящую от оси С на расстоянии а. Ось О может находиться и вне тела. Обе оси перпендикулярны плоскости чертежа (рис. 2.12).

Теорема штейнера

Рис. 2.12. К доказательству теоремы Штейнера

Из рис. 2.12 видно, что положение элемента массы относительно этих осей определяется векторами и . связь между которыми имеет вид:

Квадрат расстояния равен скалярному произведению

Тогда момент инерции тела относительно оси О можно представить в следующем виде:

Последнее слагаемое в этом выражении есть момент инерции тела относительно оси, проходящей через центр масс. Обозначим его через Сумма . Напомним, что оси О и С параллельны и следовательно, вектор перпендикулярен оси С. Поэтому скалярное произведение Таким образом, мы получаем:

Уравнение движения твердого тела.

Абсолютно твердое тело имеет шесть степеней свободы и, следовательно, его движение описывается с помощью шести дифференциальных уравнений второго порядка. Три из них описывают движение центра масс твердого тела:

где — координаты центра масс тела, — проекции внешних сил на оси координат, m — масса тела. Три других являются уравнениями моментов относительно осей ОХ. ОУ и ОZ в декартовой системе координат:

Если перемещать точку приложения силы вдоль линии ее действия, то моменты сил и результирующие силы не будут меняться, если мы имеем дело с абсолютно твердым телом. В этом случае не будут меняться и уравнения движения (2.11.1), (2.11.2).

Если найдены решения уравнений (2.11.1), (2.11.2), при известных начальных условиях, то определены и шесть координат, характеризующих движение твердого тела. Эти координаты являются функциями времени. Однако системы уравнений (2.11.1) и (2.11.2) не всегда позволяют получить решение в аналитической форме. В этом случае говорят, что уравнение движения не удается проинтегрировать, и решение уравнений находят путем численного интегрирования.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

1.7.3. Расчет моментов инерции некоторых тел. Теорема Штейнера

По формуле (1.7.8) не всегда просто удается рассчитать момент инерции тел произвольной формы.

Наиболее легко эта задача решается для тел простых форм, вращающихся вокруг оси, проходящей через центр инерции тела С (рис. 1.7.8). В этом случае, при вычислении Jc по формуле (1.7.7), появляется коэффициент k: Jc = kmR 2.

При вычислении момента инерции тела, вращающегося вокруг оси, не проходящей через центр инерции (рис. 1.7.9), следует пользоваться теоремой о параллельном переносе осей, или теоремой Штейнера (Якоб Штейнер, швейцарский геометр, 1796-1863 гг.):

J = Jc + md 2. (1.7.11)

Момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, плюс произведение массы тела на квадрат расстояния между осями.

Рис. 1.7.8. Моменты инерции шара, диска, стержня

С помощью теоремы Штейнера, например, можно легко рассчитать момент инерции стержня массой m, длиной l, вращающегося вокруг оси, проходящей через конец стержня (рис. 1.7.10).

Теорема Штейнера — формулировка

Теорема Штейнера — формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

Урок: Столк­но­ве­ние тел. Аб­со­лют­но упру­гий и аб­со­лют­но неупру­гий удары

Для изу­че­ния стро­е­ния ве­ще­ства, так или иначе, ис­поль­зу­ют­ся раз­лич­ные столк­но­ве­ния. На­при­мер, для того, чтобы рас­смот­реть ка­кой-то пред­мет, его об­лу­ча­ют све­том, или по­то­ком элек­тро­нов, и по рас­се­я­нию этого света, или по­то­ка элек­тро­нов по­лу­ча­ют фо­то­гра­фию, или рент­ге­нов­ский сни­мок, или изоб­ра­же­ние дан­но­го пред­ме­та в ка­ком-ли­бо фи­зи­че­ском при­бо­ре. Таким об­ра­зом, столк­но­ве­ние ча­стиц – это то, что окру­жа­ет нас и в быту, и в науке, и в тех­ни­ке, и в при­ро­де.

На­при­мер, при одном столк­но­ве­нии ядер свин­ца в де­тек­то­ре ALICE Боль­шо­го Ад­рон­но­го Кол­лай­де­ра рож­да­ют­ся де­сят­ки тысяч ча­стиц, по дви­же­нию и рас­пре­де­ле­нию ко­то­рых можно узнать о самых глу­бин­ных свой­ствах ве­ще­ства. Рас­смот­ре­ние про­цес­сов столк­но­ве­ния с по­мо­щью за­ко­нов со­хра­не­ния, о ко­то­рых мы го­во­рим, поз­во­ля­ет по­лу­чать ре­зуль­та­ты, неза­ви­си­мо от того, что про­ис­хо­дит в мо­мент столк­но­ве­ния. Мы не знаем, что про­ис­хо­дит в мо­мент столк­но­ве­ния двух ядер свин­ца, но мы знаем, ка­ко­ва будет энер­гия и им­пульс ча­стиц, ко­то­рые раз­ле­та­ют­ся после этих столк­но­ве­ний.

Се­год­ня мы рас­смот­рим вза­и­мо­дей­ствие тел в про­цес­се столк­но­ве­ния, иными сло­ва­ми дви­же­ние невза­и­мо­дей­ству­ю­щих тел, ко­то­рые ме­ня­ют свое со­сто­я­ние толь­ко при со­при­кос­но­ве­нии, ко­то­рое мы на­зы­ва­ем столк­но­ве­ни­ем, или уда­ром.

При столк­но­ве­нии тел, в общем слу­чае, ки­не­ти­че­ская энер­гия стал­ки­ва­ю­щих­ся тел не обя­за­на быть рав­ной ки­не­ти­че­ской энер­гии раз­ле­та­ю­щих­ся тел. Дей­стви­тель­но, при столк­но­ве­нии тела вза­и­мо­дей­ству­ют друг с дру­гом, воз­дей­ствуя друг на друга и со­вер­шая ра­бо­ту. Эта ра­бо­та и может при­ве­сти к из­ме­не­нию ки­не­ти­че­ской энер­гии каж­до­го из тел. Кроме того, ра­бо­та, ко­то­рую со­вер­ша­ет пер­вое тело над вто­рым, может ока­зать­ся нерав­ной ра­бо­те, ко­то­рую вто­рое тело со­вер­ша­ет над пер­вым. Это может при­ве­сти к тому, что ме­ха­ни­че­ская энер­гия может пе­рей­ти в тепло, элек­тро­маг­нит­ное из­лу­че­ние, или даже по­ро­дить новые ча­сти­цы.

Столк­но­ве­ния, при ко­то­рых не со­хра­ня­ет­ся ки­не­ти­че­ская энер­гия стал­ки­ва­ю­щих­ся тел, на­зы­ва­ют неупру­ги­ми.

Среди всех воз­мож­ных неупру­гих столк­но­ве­ний, есть один ис­клю­чи­тель­ный слу­чай, когда стал­ки­ва­ю­щи­е­ся тела в ре­зуль­та­те столк­но­ве­ния сли­па­ют­ся и даль­ше дви­жут­ся как одно целое. Такой неупру­гий удар на­зы­ва­ют аб­со­лют­но неупру­гим (рис. 1) .

Рис. 1. Аб­со­лют­ное неупру­гое столк­но­ве­ние

Рас­смот­рим при­мер аб­со­лют­но неупру­го­го удара. Пусть пуля мас­сой ле­те­ла в го­ри­зон­таль­ном на­прав­ле­нии со ско­ро­стью и столк­ну­лась с непо­движ­ным ящи­ком с пес­ком мас­сой . под­ве­шен­ным на нити. Пуля за­стря­ла в песке, и даль­ше ящик с пулей при­шел в дви­же­ние. В про­цес­се удара пули и ящика внеш­ние силы, дей­ству­ю­щие на эту си­сте­му, – это сила тя­же­сти, на­прав­лен­ная вер­ти­каль­но вниз, и сила на­тя­же­ния нити, на­прав­лен­ная вер­ти­каль­но вверх, если время удара пули было на­столь­ко мало, что нить не успе­ла от­кло­нить­ся. Таким об­ра­зом, можно счи­тать, что им­пульс сил, дей­ству­ю­щих на тело во время удара, был равен нулю, что озна­ча­ет, что спра­вед­лив закон со­хра­не­ния им­пуль­са:

Усло­вие, что пуля за­стря­ла в ящике, и есть при­знак аб­со­лют­но неупру­го­го удара. Про­ве­рим, что про­изо­шло с ки­не­ти­че­ской энер­ги­ей в ре­зуль­та­те этого удара. На­чаль­ная ки­не­ти­че­ская энер­гия пули:

ко­неч­ная ки­не­ти­че­ская энер­гия пули и ящика:

про­стая ал­геб­ра по­ка­зы­ва­ет нам, что в про­цес­се удара ки­не­ти­че­ская энер­гия из­ме­ни­лась:

Итак, на­чаль­ная ки­не­ти­че­ская энер­гия пули мень­ше ко­неч­ной на неко­то­рую по­ло­жи­тель­ную ве­ли­чи­ну. Как же это про­изо­шло? В про­цес­се удара между пес­ком и пулей дей­ство­ва­ли силы со­про­тив­ле­ния. Раз­ность ки­не­ти­че­ских энер­гий пули до и после столк­но­ве­ния как раз и равны ра­бо­те сил со­про­тив­ле­ния. Дру­ги­ми сло­ва­ми, ки­не­ти­че­ская энер­гия пули пошла на на­грев пули и песка.

Если в ре­зуль­та­те столк­но­ве­ния двух тел со­хра­ня­ет­ся ки­не­ти­че­ская энер­гия, такой удар на­зы­ва­ет­ся аб­со­лют­но упру­гим.

При­ме­ром аб­со­лют­но упру­гих уда­ров могут быть столк­но­ве­ния би­льярд­ных шаров. Мы рас­смот­рим про­стей­ший слу­чай та­ко­го столк­но­ве­ния – цен­траль­ное столк­но­ве­ние.

Цен­траль­ным на­зы­ва­ет­ся столк­но­ве­ние, при ко­то­ром ско­рость од­но­го шара про­хо­дит через центр масс дру­го­го шара. (Рис. 2.)

Теорема штейнера

Рис. 2. Цен­траль­ный удар шаров

Пус­кай один шар по­ко­ит­ся, а вто­рой на­ле­та­ет на него с ка­кой-то ско­ро­стью . ко­то­рая, со­глас­но на­ше­му опре­де­ле­нию, про­хо­дит через центр вто­ро­го шара. Если столк­но­ве­ние цен­траль­ное и упру­гое, то при столк­но­ве­нии воз­ни­ка­ют силы упру­го­сти, дей­ству­ю­щие вдоль линии столк­но­ве­ния. Это при­во­дит к из­ме­не­нию го­ри­зон­таль­ной со­став­ля­ю­щей им­пуль­са пер­во­го шара, и к воз­ник­но­ве­нию го­ри­зон­таль­ной со­став­ля­ю­щей им­пуль­са вто­ро­го шара. После удара вто­рой шар по­лу­чит им­пульс, на­прав­лен­ный на­пра­во, а пер­вый шар может дви­гать­ся как на­пра­во, так и на­ле­во – это будет за­ви­сеть от со­от­но­ше­ния между мас­са­ми шаров. В общем слу­чае, рас­смот­рим си­ту­а­цию, когда массы шаров раз­лич­ны.

Закон со­хра­не­ния им­пуль­са вы­пол­ня­ет­ся при любом столк­но­ве­нии шаров:

В слу­чае аб­со­лют­но упру­го­го удара, также вы­пол­ня­ет­ся закон со­хра­не­ния энер­гии:

По­лу­ча­ем си­сте­му из двух урав­не­ний с двумя неиз­вест­ны­ми ве­ли­чи­на­ми. Решив ее, мы по­лу­чим ответ.

Ско­рость пер­во­го шара после удара равна

за­ме­тим, что эта ско­рость может быть как по­ло­жи­тель­ной, так и от­ри­ца­тель­ной, в за­ви­си­мо­сти от того, масса ка­ко­го из шаров боль­ше. Кроме того, можно вы­де­лить слу­чай, когда шары оди­на­ко­вые. В этом слу­чае после удара пер­вый шар оста­но­вит­ся. Ско­рость вто­ро­го шара, как мы ранее от­ме­ти­ли, по­лу­чи­лась по­ло­жи­тель­ной при любом со­от­но­ше­нии масс шаров:

На­ко­нец, рас­смот­рим слу­чай нецен­траль­но­го удара в упро­щен­ном виде – когда массы шаров равны. Тогда, из за­ко­на со­хра­не­ния им­пуль­са мы можем за­пи­сать:

А из того, что ки­не­ти­че­ская энер­гия со­хра­ня­ет­ся:

Нецен­траль­ным будет удар, при ко­то­ром ско­рость на­ле­та­ю­ще­го шара не будет про­хо­дить через центр непо­движ­но­го шара (рис. 3). Из за­ко­на со­хра­не­ния им­пуль­са, видно, что ско­ро­сти шаров со­ста­вят па­рал­ле­ло­грамм. А из того, что со­хра­ня­ет­ся ки­не­ти­че­ская энер­гия, видно, что это будет не па­рал­ле­ло­грамм, а квад­рат.

Теорема штейнера

Рис. 3. Нецен­траль­ный удар при оди­на­ко­вых мас­сах

Таким об­ра­зом, при аб­со­лют­но упру­гом нецен­траль­ном ударе, когда массы шаров равны, они все­гда раз­ле­та­ют­ся под пря­мым углом друг к другу.

Закон сохранения импульса

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Модель представляет собой демонстрацию, иллюстрирующую закон сохранения импульса. Рассматриваются упругие и неупругие соударения шаров.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой .

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона .

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t. то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны:

Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, а и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, то есть векторную сумму импульсов всех тел, входящих в эту систему.

б) Закон сохранения энергии

Консервативные силы– силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки – функция только ее (точки) координат, значит силы Теорема штейнера можно определить так: Теорема штейнера. Теорема штейнера – потенциальная энергия материальной точки. Теорема штейнера Помножим обе части на Теорема штейнера и получим Теорема штейнера. Преобразуем и получим выражение доказывающее закон сохранения энергии .

Теорема штейнера

в) Потери механической энергии

Теорему Бернулли совместно с теоремой Эйлера, изложенной в 110, можно применить для вывода теоремы Борда (1733—1792)—Карно о потере механической энергии потока &#81&4;жидкости при внезапном его расширении (рис. 328). Теорема эта служит аналогом теоремы Кар- [c.250]

Потерю механической энергии в прямом скачке уплотнения можно характеризовать отношением полного давления за скачком к полному давлению &#81&4;Poi перед ним. Формулы, определяющие это отношение, имеют вид [c.428]

Это уравнение свидетельствует о том, что при движении жидкой среды ее внутренняя энергия изменяется как вследствие внешнего притока тепла, так и вследствие диссипации механической энергии. Процесс диссипации, как показывает выражение (5-84), связан с вязкостью р и для идеальной жидкости (р = 0) не имеет места. Поскольку этот процесс необратим, диссипирован-ную энергию Эд можно рассматривать как величину потери механической &#81&4;энергии. [c.126]

Так как в любой машине потери механической энергии неизбежны, то мощность, затрачиваемая двигателем на привод насоса (потребляемая мощность Л ), всегда больше полезной мощности &#81&4;N — Эти потери оцениваются общим КПД насоса [c.312]

При выводе уравнений (136) вязкость жидкости и связанная с ней потеря механической энергии при движении частицы жидкости &#81&4;не учитывались. [c.367]

При движении жидкости в трубе происходит потеря механической энергии, следовательно, должны быть области, в которых влияние вязкости существенно. Вследствие прилипания жидкости к стенкам трубы мгновенная и средняя скорости жидкости на стенках равны нулю. Поэтому в непосредственной близости у стенок трубы не может быть интенсивного перемешивания жидкости. Это служит основанием для вывода, что непосредственно около стенок резкое изменение скорости должно определяться свойством вязкости жидкости и что около стенок должен существовать слой с ламинарным движением. Опытные данные &#81&4;хорошо подтверждают этот вывод. [c.155]

Работа сил вязкости, произведенная между двумя сечениями потока и отнесенная к единице массы, веса или объема движущейся жидкости, называется потерями механической энергии, или гидравлическими потерями. Если эта работа отнесена к единице веса, то гидравлические потери &#81&4;называются потерями напора Л. [c.99]

Модель невязкой жидкости не может объяснить происхождение потерь механической энергии при движении жидкости по трубопроводам и вообще эффекта сопротивления. Для описания этих явлений используется более сложная модель вязкой жидкости. Простейшей и наиболее употребительной моделью вязкой жидкости &#81&4;является ньютоновская жидкость. [c.18]

Работа сил давления р расходуется на преодоление сил сопротивления, что и обусловливает потери механической энергии. Эти потери прямо пропорциональны длине пути движения, поэтому их называют потерями удельной энергии по длине. Если потери выражены в единицах давления, их называют потерями давления по длине и обозначают pi. Если потери энергии выражены в линейных единицах EJg), их называют потерями напора &#81&4;по длине и обозначают /г. [c.132]

Получение регулярных потоков с малыми потерями при торможении в диффузорах — задача гораздо более трудная, чем получение ускоренных потоков с малыми потерями в соплах. В диффузорах идеальные обратимые движения нарушаются за счет тех же причин и свойств среды, что и в соплах, однако при торможении потоков влияние перечисленных выше факторов проявляется в более сильной степени. В диффузорах из-за движения против возрастающего давления условия отрыва потока от стенок более благоприятны, чем в соплах, в которых

а) Трение −− один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел или наличия неровностей и шероховатостей.

Теорема штейнера

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя. Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону.

Теорема штейнера

Сила трения покоя не может превышать некоторого максимального значения (Fтр)max(Fтр)max. Если внешняя сила больше (Fтр)max(Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя. Эта модель силы сухого трения применяется при решении многих простых физических задач.

б)Сила трения скольжения — сила, возникающая между соприкасающимися телами при их относительном движении.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения. Так как никакое тело не является абсолютно ровным, сила трения не зависит от площади соприкосновения, и истинная площадь соприкосновения гораздо меньше наблюдаемой; кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.

Величина, характеризующая трущиеся поверхности, называется коэффициентом трения. и обозначается чаще всего латинской буквой <\displaystyle k> или греческой буквой <\displaystyle \mu >. Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то <\displaystyle k> можно считать постоянным. В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

<\displaystyle k> — коэффициент трения скольжения,

<\displaystyle N> — сила нормальной реакции опоры.

в) Коэффициент трения устанавливает пропорциональность между силой трения и силой нормального давления, прижимающей тело к опоре. Коэффициент трения является совокупной характеристикой пары материалов которые соприкасаются и не зависит от площади соприкосновения тел.

Трение покоя проявляется в том случае, если тело находившееся в состоянии покоя, приводится в движение. Коэффициент трения покоя обозначается &#&56;0 .

Трение скольжения проявляется при наличии движения тела, и оно значительно меньше трения покоя.

Следовательно, момент импульса тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость вращения тела вокруг этой оси.

« 5.5. Второй закон Ньютона для вращательного движения и его анализ

5.7. Основное уравнение динамики вращательного движения »

Раздел: Динамика вращательного движения твердого тела, Физические основы механики

Б) Уравнение динамики вращательного движения твердого тела

Моментом силы Теорема штейнера относительно неподвижной точкиO называется псевдовекторная величина Теорема штейнера равная векторному произведению радиус-вектора Теорема штейнера, проведенному из точки O в точку приложения силы, на силу Теорема штейнера

Теорема штейнера

Модуль момента силы:

Теорема штейнера

Теорема штейнераТеорема штейнера — псевдовектор, его направление совпадает с направлением плоскости движения правого винта при его вращении от Теорема штейнера к Теорема штейнера. Направление момента силы можно также определить по правилу левой руки: четыре пальца левой руки поставить по направлению первого сомножителя Теорема штейнера. второй сомножитель Теорема штейнера входит в ладонь, отогнутый под прямым углом большой палец укажет направления момента силы Теорема штейнера. Вектор момента силы всегда перпендикулярен плоскости, в котоой лежат векторы Теорема штейнера и Теорема штейнера .

Теорема штейнера -где кратчайшее расстояния между линией действия силы и точкой О называется плечом силы.

Теорема штейнера

Моментом силы Теорема штейнера относительно неподвижной осиZ называется скалярная величина равнаяпроекции на эту ось вектора момента силы Теорема штейнера. определённого относительно произвольной точки O данной оси Z. Если ось Z перпендикулярна плоскости, в которой лежат векторы Теорема штейнера и Теорема штейнера. т.е. совпадает с направлением вектора Теорема штейнера. то момент силы Теорема штейнера представляется в виде вектора совпадающего с осью.

Теорема штейнера

Ось, положение которой в пространстве остается неизменнымпривращении вокруг тела в отсутствие внешних сил,называется свободной осью тела.

Для тела любой формы и с произвольным распределением массы существует 3 взаимно перпендикулярных, проходящих через центр инерции тела оси, которые могут служить свободными осями:они называются главными осями инерции тела.

Найдем выражение для работы при вращательном движении тела. Пусть на массу m твердого тела действует внешняя сила Теорема штейнера. Тогда работа этой силы за время dt равна Теорема штейнера

Теорема штейнера

Осуществим в смешанном произведении векторов циклическую перестановку сомножителей, воспользовавшись правилом

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Работа при вращении тела равна произведению момента действия силы на угол поворота Теорема штейнера. Работа при вращении тела идет на увеличение его кинетической энергии:

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

Теорема штейнера

— уравнение динамики вращательного движения

Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то выполняется векторное равенство Теорема штейнера

І — главный момент инерции (момент инерции относительно главной оси)

КРУТИЛЬНЫЕ КОЛЕБАНИЯ — механич. колебания, при к-рых упругие элементы испытывают деформации сдвига. Имеют место в разл. машинах с вращающимися валами: в поршневых двигателях, турбинах, генераторах, редукторах, трансмиссиях транспортных машин.

К. к. возникают в результате неравномерности периодич. момента как движущих сил, так и сил сопротивления. Неравномерность крутящего момента вызывает неравномерность изменения угловой скорости вала, т. е. то ускорение, то замедление вращения. Обычно вал представляет собой чередование участков с малой массой и упругой податливостью с более жёсткими участками, на к-рых закреплены значит. массы. В каждом сечении вала будет своя степень неравномерности вращения, поскольку в одинаковый промежуток времени массы проходят разные углы и, следовательно, движутся с разными скоростями, что создаёт переменное кручение вала и динамич. знакопеременные напряжения, гл. обр. касательные.

При совпадении частот собств. колебаний системы с частотой периодич. крутящего момента движущих сил и сил сопротивления возникают резонансные колебания. В этом случае повышается уровень динамич. переменных напряжений; возрастает акустич. шум, излучаемый работающей машиной. Динамич. знакопеременные напряжения при неправильно выбранных (заниженных) размерах вала, недостаточной прочности его материала и возникновении резонанса могут превысить предел выносливости, что приведёт к усталости материала вала и его разрушению.

При расчёте К. к. валов машин часто пользуются расчётной схемой с двумя дисками, соединёнными упругим стержнем, работающим на кручение. В этом случае собств. частота

Теорема штейнера

где I1 — момент инерции 1-го диска, I2 — момент инерции 2-го диска, С -крутильная жёсткость стержня, Для круглого стержня диаметром d и длиной l СТеорема штейнера где G — модуль сдвига. Более сложные расчётные схемы содержат большее число дисков, соединённых стержнями и образующих последоват. цепи, а иногда — разветвлённые и кольцевые цепи. Расчёт собств. частот форм и вынужденных К. к. по этим расчётным схемам производится на ЭВМ.

Др. примером К. к. является крутильный маятник, к-рый представляет собой диск, закреплённый на одном конце стержня, работающего на кручение и жёстко заделанного др. концом. Собств. частота такого маятника Теорема штейнера где I — момент инерции диска. Приборы с использованием крутильного маятника применяют для определения модуля упругости при сдвиге, коэф. внутр. трения твёрдых материалов при сдвиге, коэф. вязкости жидкости.

К. к. возникают в разнообразных упругих системах; в нек-рых случаях возможны совместные колебания с разл. видами деформации элементов системы, напр. изгибно-крутильные колебания. Так, при определ. условиях полёта под действием аэродинамич. сил иногда возникают самовозбуждающиеся изгибно-крутильные колебания крыла самолёта (т. н. флаттер), к-рые могут вызывать разрушение крыла.

Лит.: Ден-Гартог Д. П. Механические колебания, пер. с англ. М. 1&60; Маслов Г. С. Расчёты колебаний валов. Справочник, 2 изд. М. 1&80; Вибрации в технике. Справочник, под ред. В. В. Болотина, т. 1, М. 1&78; Силовые передачи транспортных машин, Л. 1982. А. В. Синев

Амплитудаколебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Теорема штейнера

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Теорема штейнера

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

Теорема штейнера

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Теорема штейнера

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний .

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1Гц. то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

Теорема штейнера .

В теории колебаний пользуются также понятием циклической. или круговой частоты&#&69;. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

Теорема штейнера .

Циклическая частота — это число колебаний, совершаемых за 2&#&60; секунд.

а) Колебания. Затухающие и незатухающие

Повторяющиеся процессы определяют нашу жизнь. Зима сменяет лето, день сменяет ночь, вдох сменяет выдох. Бежит время, и его мы тоже отмеряем повторяющимися процессами. Повто­ряющиеся процессы и есть колебания .

Колебанияминазываются повторяющи­еся во времени изменения физической величи­ны.

Если эти изменения повторяются через оп­ределенный интервал времени, то колебания называются «периодическими». Наименьший интервал времени T, через который повторяют­ся значения физической величины A(t). называ­ется периодом ее колебаний A(t + Т) =A(t). Число колебаний в единицу времени v называ­ется частотой колебаний. Частота колебаний и период связаны соотношением v = 1 / Т. Колебания системы, которые совершаются в от­сутствие внешнего воздействия, называются свободными. Для возбуждения колебаний необ­ходимо внешнее воздействие. Системе извне сообщается запас энергии, за счет которой и происходят колебания. Это внешнее воздействие выводит систему из положения равновесия, и в дальнейшем она совершает дви­жение около положения равновесия, уходя и возвращаясь к нему, по инерции проскакивая его. И так повторяется раз за разом. Движение в данном контексте означает измене­ние состояния. В механических системах это может быть перемещение в пространстве или изменение давления, в электрических — изменение величины заряда или напря­женности поля. Существует бесконечное множество раз­личных движений и соответствующих им колебательных процессов.

Любую систему, соверша­ющую колебательное дви­жение, именуют«осцилля­тор»(в пер. с лат.oscillo— «колеблюсь»), соответст­венно и слово «колеба­ния» часто заменяют тер­мином «осцилляции».

Если амплитуда колебаний не меняется во времени, гармо­нические колебания называютсянезатухающими.

Диффе­ренциальное уравнение, описывающее гармонические не­затухающие колебания. имеет вид:

Если амплитуда уменьшается с течением времени, коле­бания называютсязатухающими.

Часто встречающийся пример затухающих колебаний — колебания, в кото­рых амплитуда уменьшается по закону

Коэффициент затухания &#&46; > 0.

В системе СИ время из­меряется в с, а частота со­ответственно в обратных секундах (с -1 ). Эта единица измерения имеет специ­альное название«герц», 1 Гц = 1 с -1. Немецкий фи­зик Генрих Рудольф Гер

Теорема Штейнера

Теоре́ма Ште́йнера. момент инерции тела I относительно произвольной оси равен сумме момента инерции этого тела I c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Теорема штейнера

Теорема штейнера — масса тела, и R — расстояние между осями.

Ссылка Править

Выделить Теорема Штейнера и найти в:

  • Страница 0 — краткая статья
  • Страница 1 — энциклопедическая статья
  • Разное — на страницах. 2. 3. 4. 5
  • Прошу вносить вашу информацию в «Теорема Штейнера 1 », чтобы сохранить ее

Комментарии читателей: Править

Обнаружено использование расширения AdBlock.

Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

1)Измерение— процесс нахождения значения физической величины опытным путем с помощью средств измерения.

Прямые — это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных.Косвенные — это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями.

Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения.

Окончательный результат измерения должен быть представлен в стандартной форме записи. Для этого:

1. Абсолютную погрешность измерения округляют до первой значащей цифры, если она не единица;

2. Если первая значащая цифра в абсолютной погрешности единица, то абсолютную погрешность представляют в виде числа с двумя значащими цифрами. Значащими цифрами числа называют все его цифры, начиная с первой слева, отличной от нуля.

3. Числовое значение результата измерения представляется, так чтобы и среднее значение и абсолютная погрешность имели одинаковое число десятичных знаков после запятой.

Среднее значение результата измерения округляют до того разряда, до которого округлена абсолютная погрешность.

4. Среднее значение результата представляют в виде числа, содержащего до запятой одну значащую цифру, умноженного на десять в соответствующей степени.

3) Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является матери­альная точка — тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь.

Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.

Векторный способ Положение материальной точки задается с помощью радиуса-вектора Теорема штейнераотносительно некоторой неподвижной точки О.Теорема штейнера

При описании этим способом с телом отчета связывают какую-либо систему координат (например, декартову).Теорема штейнера

Теорема штейнера— закон движения материальной точки

В нем движение описывается с помощью параметров самой траектории, и он используется, когда траектория известна.Теорема штейнера

Теорема штейнеразакон движения точки

Теорема штейнерасредняяпутевая скорость

4) Траектория – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике.

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Ско́рость — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени

Средняя скорость движения – это физическая величина, равная отношению вектора перемещения точки к интервалу времени, за который это перемещение произошло.

Мгновенной скоростьюТеорема штейнерамгн называется скорость в данный момент времени.

Мгновенная скорость определяется как предел отношения вектора перемещения к интервалу времени, за который это перемещение происходит, при стремлении интервала времени к нулю:

Теорема штейнера

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Теорема штейнера

Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей [1] .

Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

5) Ускоре́ние — скорость изменения скорости, то есть первая производная от скорости по времени, векторная величина, показывающая, на сколько изменяется вектор скорости тела при его движении за единицу времени

В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением. Она характеризует изменение скорости по модулю.

Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением . Она характеризует изменение скорости по направлению.

Здесь R — радиус кривизны траектории в данной точке.

Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения

Углова́я ско́рость — векторная величина характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Теорема штейнера

Углово́е ускоре́ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости движения материальной точки по окружности.

При вращении точки вокруг неподвижной оси, угловое ускорение по модулю равно [1] :

Теорема штейнера

6) Си́ла — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивномутелу сила является причиной изменения его скорости или возникновения в нёмдеформаций и напряжений

Масса — величина, измеряющая количество вещества в теле, мера инерции тела по отношению к действующей на него силе

1 закон Ньютона

Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения..

2 закон Ньютона

Ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

Теорема штейнераТеорема штейнера

3 закон Ньютона

Силы, с которыми тела взаимодействуют друг с другом, равны по модулю и направлены вдоль одной прямой в противоположные стороны.

центр инерции, геометрическая точка, положение которойхарактеризует распределение масс в теле или механической системе. Координаты Ц. м. определяютсяформулами

Теорема штейнера,Теорема штейнераТеорема штейнера

или для тела при непрерывном распределении масс

Теорема штейнераТеорема штейнера

8)Внутренние силы – это силы взаймодействия между точками самой системы

Внешние силы – силы приложенные к точкам системы со стороны тел не пренадлежащих системе .

Замкнутые системы – системы где действуют только внутренние силы изолированные от внешних сил

консервати́вные си́лы (потенциальные силы) — это силы, работа которых не зависит от видатраектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки [1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.

9) Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению.

Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.

Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.

сухое. когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;

жидкостное (вязкое). при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита),жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости .

Для тонкого растяжимого стержня закон Гука имеет вид:

Теорема штейнера

Здесь Теорема штейнера — сила, которой растягивают (сжимают) стержень, Теорема штейнера — абсолютное удлинение (сжатие) стержня, аТеорема штейнеракоэффициент упругости (или жёсткости).

10)механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергий, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, и имеет способность совершать механическую работу

Закон сохранения механической энергии утверждает, что если тело или система подвергается действию только консервативных сил, то полная механическая энергия этого тела или системы остаётся постоянной. В изолированной системе, где действуют только консервативные силы, полная механическая энергия сохраняется. [3]

Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальной точки и зависящая только от массы и модуля скорости материальных точек, образующих рассматриваемую физическую систему [1]. энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательногодвижения [2] .

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением [

Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжестизапасается в виде потенциальной энергии тела.

Кривая — зависимость потенциальной энергии от координаты.

Связь между энергией и массой неизбежно следует из закона сохранения энергии и того факта, что масса тела зависит от скорости его движения.

Теорема штейнера

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

12) И́мпульс (Коли́чество движе́ния ) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v. направление импульса совпадает с направлением вектора скорости:

Теорема штейнера

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Теорема штейнера

Абсолютно упругим ударомназывается столкновение, при котором сохраняется механическая энергия системы тел.

Абсолютно неупругим ударомназывают такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

14) Мощность — это физическая величина, равная отношению работы ко времени, за который эта работа была выполнена. Коэффициент полезного действия (КПД) — это физическая величина, равная отношению полезной работы к полной работы. КПД обозначается буквой η и измеряется в процентах. Полезная работа всегда меньше полной. КПД всегда меньше 100%.

РаботойA, совершаемой постоянной силой Теорема штейнераназывается физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силыТеорема штейнераи перемещенияТеорема штейнера (рис. 1.18.1):

15) Моме́нт ине́рции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Тензор инерции — в механике абсолютно твёрдого тела — тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:

Теорема штейнера

где Теорема штейнера — тензор инерции, Теорема штейнера — угловая скорость, Теорема штейнера — момент импульса

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja . равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

Теорема штейнера,

16) Теорема Гюйгенса — Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Теорема штейнера

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Теорема штейнера

Кинетическая энергиявращательного движения — энергия тела, связанная с его вращением.

Основные кинематические характеристики вращательного движения тела — его угловая скорость (Теорема штейнера) и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z:

Теорема штейнера

и кинетическая энергия

Теорема штейнера

где Iz — момент инерции тела относительно оси вращения.

17) Момент силы — векторная физическая величина, равная векторному произведению радиус-вектора, на вектор этой силы

Плечо силы- величина, равная кратчайшему расстоянию от данной точки (центра) до линии действия силы.

Теорема штейнера

— Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого телаТеорема штейнера, равно импульсу момента Теорема штейнеравсех внешних сил, действующих на это тело.

18) Момент импульса Теорема штейнераматериальной точки относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

Теорема штейнера

где Теорема штейнера — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, Теорема штейнера — импульс частицы.

Изменение во времени момента импульса системы равно суммарному моменту всех внешних сил

Теорема штейнера.

Закон изменения момента импульса: приращение момента импульса равно импульсу суммарного момента внешних сил за время Теорема штейнера

Теорема штейнера .

Закон сохранения момента импульса: момент импульса замкнутой системы, взятый относительно любой точки инерциальной системы отсчета, не изменяется при любых процессах, происходящих внутри данной системы

Теорема штейнера.

Теорема штейнерасохранение проекции импульса.

19) Рассмотрим действие внешней силы Теорема штейнера, приложенной к точке массой Теорема штейнера. За время Теорема штейнераэлементарная масса Теорема штейнерапроходит путь Теорема штейнераРабота силы Теорема штейнерана этом пути определяется проекцией силы на направление перемещения, которая очевидно, равна тангенциальной составляющей Теорема штейнерасилы.

Теорема штейнера

Но Теорема штейнераравна модулю момента Теорема штейнерасилы Теорема штейнераотносительно оси вращения. Работа Теорема штейнера, и будет положительна, если Теорема штейнераимеет такое же направление, как и Теорема штейнера отрицательное, если направление векторов Теорема штейнераи Теорема штейнера противоположны.

Теорема штейнера

Работа всех сил, приложенных к телу

Теорема штейнера

Теорема штейнера

22) Неинерциа́льная систе́ма отсчёта — система отсчёта, в которой не выполняется первый закон Ньютона — «закон инерции», говорящий о том, что каждое тело, в отсутствие действующих на него сил, покоится либо движется по прямой и с постоянной скоростью. Всякая система отсчета, движущаяся с ускорением или поворачивающаяся относительно инерциальной, является неинерциальной. Второй закон Ньютона также не выполняется в неинерциальных системах отсчёта. Для того чтобы уравнение движения материальной точки в неинерциальной системе отсчёта по форме совпадало с уравнением второго закона Ньютона, дополнительно к «обычным» силам, действующим в инерциальных системах, вводят силы инерции.

Силы инерции — силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета:Теорема штейнера, гдеТеорема штейнера— сила, действующая на тело со стороны других тел;

Теорема штейнера — сила инерции, действующая на тело относительно поступательно движущейся НСО. Теорема штейнера — ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;

Теорема штейнера — центробежная сила инерции, действующая на тело относительно вращающейся НСО. Теорема штейнера — угловая скорость НСО относительно ИСО, Теорема штейнера — расстояние от тела до центра вращения;

Теорема штейнера — кориолисова сила инерции, действующая на тело, движущееся со скоростью Теорема штейнера относительно вращающейся НСО. Теорема штейнера — угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).

23) В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач.

Например, нормальное и тангенциальное ускорения материальной точки определяются соответствующими составляющими силы, сообщающая материальной точке нормальное ускорение, направлена к центру кривизны траектории и потому называется центростремительной силой

Первый постулат: законы физики имеют одинаковую форму во всех инерциальных системах отсчета. Этот постулат явился обобщением принципа относительности Ньютона не только на законы механики, но и на законы остальной физики. Первый постулат — принцип относительности.

Второй постулат: свет распространяется в вакууме с определенной скоростью с, не зависящей от скорости источника или наблюдателя.

Эти два постулата образуют основу теории относительности А. Эйнштейна.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *