Сторонние силы

Сторонние силы

Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил.

Представим стороннюю силу Fст, действующую на заряд q, в виде

Сторонние силы

Природа сторонних сил может быть различной. Источники постоянного тока могут быть основаны на химическом (гальванические элементы и аккумулятоpы) или тепловом (теpмопаpы) действии. В гальванических элементах сторонние силы возникают за счет энергии химических реакций между электродами и электролитами Гальванические элементы и аккумуляторы преобразуют химическую энергию в электрическую. В генераторе сторонние силы образуются за счет механической энергии вращения ротора генератора и т.д.,термопары преобразуют внутреннюю энергию в электрическую, фотоэлементы — световую в электрическую.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил \vec E_, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре L ЭДС будет равна:

Сторонние силы

Теория Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта теория обладает внутренними противоречиями (с одной стороны, применяет законы классической физики, а с другой основывается на квантовых постулатах). В теории Бора рассмотрены спектры атома водорода и водородоподобных систем и вычислены частоты спектральных линий, однакоэта теория не смогла объяснить интенсивности спектральных линий и ответить на вопрос: почему совершаются те или иные переходы? Серьезным недостатком теории Бора была невозможность описания с ее помощью спектра уже атома гелия — одного из простейших атомов, непосредственно следующего за атомом водорода.

Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

h E E. &#&57; = n − m (19.6)

равной разности энергий соответствующих стационарных состояний (Еn и Еm — соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При Еm<Еn происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Еm>Еn — его поглощение (переходатома в состояние с большей энергией, т. е. переход электрона на более удаленную отядра орбиту). Набор возможных дискретных частот v=(En —Em )/ h квантовых переходов и определяет линейчатый спектр атома.

Переме́нный ток (англ. alternatingcurrent) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным. Условное обозначение на электроприборах: \thicksim или \thickapprox (знак синусоиды), или латинскими буквами AC.

Величина, обратная периоду, называется частотой переменного тока:

Сторонние силы — частота переменного тока;

Сторонние силы — период переменного тока.

Сторонние силы. Электродвижущая сила и напряжение

Сторонние силы. Электродвижущая сила и напряжение — раздел Электротехника, Закон сохранения электрического заряда Если В Цепи На Носители Тока Действуют Только Силы Электростатического Поля.

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от то­чек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электричес­кого поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называ­ются источниками тока. Силы неэлектро­статического происхождения, действую­щие на заряды со стороны источников тока, называются сторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ро­тора генератора и т. п. Роль источника тока в электрической цепи, образно гово­ря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электри­ческие заряды движутся внутри источни­ка тока против сил электростатического поля, благодаря чему на концах цепи под­держивается разность потенциалов и в це­пи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Фи­зическая величина, определяемая работой, совершаемой сторонними силами при пе­ремещении единичного положительного заряда, называется электродвижущей си­лой (э. д. с.) &#&58;, действующей в цепи:

Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину &#&58; можно также называть элек­тродвижущей силой источника тока, вклю­ченного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние си­лы», говорят: «в цепи действует э. д. с.», т. е. термин «электродвижущая сила» употребляется как характеристика сторон­них сил. Э. д. с. как и потенциал, выража­ется в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила Fст. действующая на заряд Q0. может быть выражена как

где Ест — напряженность поля сторонних сил. Работа же сторонних сил по переме­щению заряда Q0 на замкнутом участке цепи равна

Сторонние силы

Разделив (97.2) на Q0. получим выражение для э.д.с. действующей в цепи:

Сторонние силы

т. е. э.д.с. действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с. действующая на участке 12,

Сторонние силы

На заряд Q0 помимо сторонних сил действуют также силы электростатическо­го поля Fe =Q0E. Таким образом, резуль­тирующая сила, действующая в цепи на заряд Q0. равна

Работа, совершаемая результирующей силой над зарядом Q0 на участке 12, равна

Сторонние силы

Используя выражения (97.3) и (84.8), можем записать

Сторонние силы

Для замкнутой цепи работа электростати­ческих сил равна нулю (см. §83), поэтому в данном случае A12 =Q0 &#&58;12 .

НапряжениемU на участке 12 на­зывается физическая величина, определя­емая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении еди­ничного положительного заряда на дан­ном участке цепи. Таким образом, соглас­но (97.4),

Понятие напряжения является обоб­щением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует э.д.с. т. е. сторонние силы отсутствуют.

Все темы данного раздела:

Закон сохранения электрического заряда
Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягива­ет легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легк

Закон Кулона
Закон взаимодействия неподвижных то­чечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутиль­ных весов, подобных тем, которые (см. §22) использовались Г.Кавендишем для

Электростатическое поле. Напряженность электростатического поля
Если в пространство, окружающее элек­трический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружаю­щем электрические заряды, существует

Принцип суперпозиции электростатических полей
Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвиж­ных зарядов q1

Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме
Вычисление напряженности поля системы электрических зарядов с помощью при­нципа суперпозиции электростатических полей можно значительно упростить, ис­пользуя выведенную немецким ученым К. Гауссом (

Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
1. Поле равномерно заряженной бесконечной плоскости.Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотно­стью+ s (s=dQ/dS—заряд, приходящийс

Работа электрического поля. Циркуляция вектора напряженности электростатического поля
Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траектории (рис. 132) переме­щается другой точечный заряд Q0, то сила, при

Потенциал электростатического поля. Разность потенциалов.
Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. §12). Как из­вест

Напряженность как градиент потенциала. Эквипотенциальные поверхности
Найдем взаимосвязь между напряженно­стью электростатического поля, являю­щейся его силовой характеристикой, и по­тенциалом — энергетической характери­стикой поля. Работа по п

Вычисление разности потенциалов по напряженности поля
Установленная выше связь между напря­женностью поля и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя про­извольными точками этого поля.

Типы диэлектриков. Виды поляризации
Диэлектрик (как и всякое вещество) со­стоит из атомов и молекул. Так как поло­жительный заряд всех ядер молекулы ра­вен суммарному заряду электронов, то молекула в целом электрически нейтраль­на. Е

Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряжен­ность поля Е обратно пропорциональна e. Вектор напряженности

Проводники в электростатическом поле
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­

Электрическая емкость уединенного проводника
Рассмотрим уединенный проводник,т. е. проводник, который удален от других проводников, тел и зарядов. Его потенци­ал, согласно (84.5), прямо пропорциона­лен заряду проводника. Из о

Конденсаторы
Как видно из § 93, для того чтобы про­водник обладал большой емкостью, он дол­жен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых раз­мера

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
1. Энергия системы неподвижных точеч­ных зарядов.Электростатические силы взаимодействия консервативны (см. § 83); следовательно, система зарядов обладает потенциальной эне

Энергия электростатического поля.
Преобразуем формулу (95.4), выражаю­щую энергию плоского конденсатора по­средством зарядов и потенциалов, вос­пользовавшись выражением для емкости плоского конденсатора (C = e0e/d) и раз

Электрический ток, сила и плотность тока
В электродинамике— разделе учения об электричестве, в котором рассматривают­ся явлени

Закон Ома. Сопротивление проводников
Немецкий физик Г. Ом (1787—1854) эк­спериментально установил, что сила то­ка I, текущего по однородному металличе­скому проводнику (т. е. проводнику, в ко­тором не действуют сторонние силы),

Закон Ома для неоднородного участка цепи
Рассмот­рим неоднородный участок цепи,где дей­ствующую э.д.с. на участке 1—2 обозна­чим через &#&58;12, а приложенную на концах участка разность пот

Работа и мощность тока. Закон Джоуля — Ленца
Рассмотрим однородный проводник, к кон­цам которого приложено напряжение U. За время At через сечение проводника перено­сится заряд dq = Idt. Так как ток пред­ставляет собой пе

Правила Кирхгофа для разветвленных цепей
Обобщенный закон Ома (см. (100.3)) по­зволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут и

Работа выхода электронов из металла
Как показывает опыт, свободные электро­ны при обычных температурах практиче­ски не, покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препят

Эмиссионные явления и их применение
Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего на­блюдается явление испускания электро­нов, или

Ионизация газов. Несамостоятельный газовый разряд
Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воз­дух заряженный электрометр с хорошей изоляц

Самостоятельный газовый разряд и его типы
Разрядв газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным. Рассмотрим условия возникновения са­мостоятельного разряда. Как уж

Плазма и ее свойства
Плазмойназывается сильно ионизован­ный газ, в котором концентрации положи­тельных и отрицательных зарядов практи­чески одинаковы. Различают высокотемпе­ратурную плазму,

Магнитное поле и его характеристики
Опыт показывает, что, подобно тому, как в пространстве, окружающем электриче­ские заряды, возникает электростатиче­ское поле, так в пространстве, окружаю­щем токи и постоянные магниты, возника­ет с

Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
Магнитное поле постоянных токов различ­ной формы изучалось французскими уче­ными Ж. Био (1774—1862) и Ф. Саваром (1791 —1841). Результаты этих опытов бы­ли обобщены выдающимся французским математик

Закон Ампера. Взаимодействие параллельных токов
Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая

Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
Если два параллельных проводника с то­ком находятся в вакууме (m=1), то сила взаимодействия на единицу длины про­водника, согласно (111.5), равна

Магнитное поле движущегося заряда
Каждый проводник с током создает в ок­ружающем пространстве магнитное поле. Электрический же ток предс

Действие магнитного поля на движущийся заряд
Опыт показывает, что магнитное поле дей­ствует не только на проводники с током (см. §111), но и на отдельные заряды, движущиеся в магнитном поле. Сила, дей­ствующая на электрический заряд Q,

Движение заряженных частиц в магнитном поле
Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной ч

Ускорители заряженных частиц
Ускорителямизаряженных частиц назы­ваются устройства, в которых под дей­ствием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (э

Эффект Холла
Эффект Холла (1879) — это возникнове­ние в металле (или полупроводнике) с то­ком плотностью j, помещенном в магнит­ное поле В, электрического поля в направ­лении,

Циркуляция вектора В для магнитного поля в вакууме
Аналогично циркуляции вектора напря­женности электростатического поля (см. § 83) введем циркуляцию вектора магнитной индукции. Циркуляцией векто­ра Впо заданному замкнутому контуру

Магнитное поле соленоида и тороида
Рассчитаем, применяя теорему о циркуля­ции, индукцию магнитного поля внутри соленоида.Рассмотрим соленоид длиной l,

Поток вектора магнитной индукции. Теорема Гаусса для поля В
Потоком вектора магнитной индукции (магнитным потоком)через площадку dS называется скалярная физическая величи­на, равная dФB=B

Работа по перемещению проводника и контура с током в магнитном поле
На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. §111). Если проводник не закреплен (например, одна из сторон кон­тура изготовлена в виде подвижной пере­мычки,

Магнитные моменты электронов и атомов
Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процесса­ми, происходящими в веществе. Свойства среды учитывались формально с помощью магнит

Диа- и парамагнетизм
Всякое вещество является магнетиком,т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необход

Намагниченность. Магнитное поле в веществе
Подобно тому, как для количественного описания поляризации диэлектриков вво­дилась поляризованность (см. §88), для количественного описания намагничения магнетиков вводят векторную величину —

Ферромагнетики и их свойства
Помимо рассмотренных двух классов ве­ществ — диа- и парамагнетиков, называе­мых слабомагнитными веществами,су­ществуют еще сильномагнитные вещест­ва — ферромагнетики

Природа ферромагнетизма
Рассматривая магнитные свойства ферро­магнетиков, мы не вскрывали физическую природу этого явления. Описательная тео­рия ферромагнетизма была разработана французским физиком П. Вейссом (1865—1940).

Закон Фарадея и его вывод из закона сохранения энергии
Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром

Вращение рамки в магнитном поле
Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы,принцип действия котор

Индуктивность контура. Самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био — Савара—Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром ма

Токи при размыкании и замыкании цепи
При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции.

Взаимная индукция
Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I1, то магнитный поток, со­з

Трансформаторы
Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в

Энергия магнитного поля
Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезно­вением тока. Магнитное поле, подобно э

Вихревое электрическое поле
Из закона Фарадея &#&58;=dФ/dt следует, что любое изменение сцепленного с контуром потока магнитной индукции приводит к возникновению элек­тродвижущей силы индукции и вследст

Ток смещения
Согласно Максвеллу, если всякое пере­менное магнитное поле возбуждает в окру­жающем пространстве вихревое электри­ческое поле, то должно существовать и об­ратное явление: всякое изменение элек­трич

Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электр

Экспериментальное получение электромагнитных волн
Существование электромагнитных волн — переменного электромагнитного поля, рас­пространяющегося в пространстве с ко­нечной скоростью,— вытекает из уравне­ний Максвелла (см.

Дифференциальное уравнение электромагнитной волны
Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропн

Энергия электромагнитных волн. Импульс электромагнитного поля
Возможность обнаружения электромаг­нитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны скла­дывается из объемных плотностей wэл

Излучение диполя. Применение электромагнитных волн
Простейшим излучателем электромагнит­ных волн является электрический диполь, электрический момент которого изменяет­ся во времени по гармоническому закону р = р

Сторонние силы
Главная | О нас | Обратная связь

Сторонние силы. Электродвижущая сила и напряжение

Если бы на носители тока действовали только силы электростатического поля, то под их действием положительные носители перемещались из мест с большим потенциалом к местам с меньшим потенциалом, а отрицательные носители двигались бы в обратном направлении. Это вело бы к выравниванию потенциалов всех соединенных между собой проводников и ток прекратится. Чтобы этого не произошло, в цепи постоянного тока наряду с участками, где положительные носители движутся в сторону уменьшения потенциала j, должны иметься участки, на которых перенос положительных носителей происходит в сторону возрастания j, т.е. против сил электрического поля. Перенос носителей на этих участках возможен лишь с помощью сил неэлектростатического происхождения. Такие силы назвали сторонними. Работа сторонних сил обеспечивается при помощи источников тока.

Таким образом, для поддержания постоянного тока необходимы сторонние силы, действующие либо на отдельных участках цепи, либо на всем протяжении цепи. Физическая природа сторонних сил может быть различной. Они могут быть обусловлены, например, химической и физической неоднородностью проводника. Такие силы, возникают при соприкосновении разнородных проводников (гальванические элементы, аккумуляторы) или проводников с различной температурой (термоэлементы). Сторонние силы могут быть также обусловлены электрическими (но не электростатическими) полями, порождаемыми переменными магнитными полями и т.д.

Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами. Величина, равная работе сторонних сил над единичным положительным зарядом называют электродвижущей силой (ЭДС) Е, действующей в цепи или на ее участке. Следовательно, если работа сторонних сил над зарядом q равна А, то

Из сопоставления формул (17.1) и (4.14) вытекает, что размерность ЭДС совпадает с размерностью потенциала. Поэтому Е измеряется в вольтах (В), как и j.

Стороннюю силу . действующую на заряд q, можно представить в виде

Векторную величину называют напряженность поля сторонних сил ( равна силе, действующей на единичный положительный заряд, которая обусловлена не электростатическим полем). Работа сторонних сил над зарядом q на участке 1-2 равна

Разделив эту работу на q, получим ЭДС, действующую на данном участке:

Аналогичный интеграл, вычисленный для замкнутой цепи, даст ЭДС, действующую в этой цепи:

Таким образом, ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности сторонних сил.

Кроме сторонних сил на заряд действуют силы электростатического поля = q . Следовательно, результирующая сила, действующая в каждой точке цепи на заряд q равна:

Работа, совершаемая этой силой над зарядом q на участке цепи 1-2, определяется интегралом:

Падением напряжения или просто напряжением U на участке 1-2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (17.5):

Участок цепи, на котором не действуют сторонние силы, называют однородным. Участок, на котором на носители тока действуют сторонние силы, называют неоднородным. Для однородного участка цепи E12 = 0, и

т.е. напряжение совпадает с разностью потенциалов на концах участка.

СТОРОННИЕ СИЛЫ это:

СТОРОННИЕ СИЛЫ СТОРОННИЕ СИЛЫ

СТОРО́ННИЕ СИ́ЛЫ в электродинамике, силы неэлектростатического происхождения, действующие на заряды со стороны источников тока и вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонние силы совершают работу по разделению зарядов и поддержанию разности потенциалов на концах цепи.
В цепи, в котоpой действуют только электpостатические силы, постоянный ток (см. ПОСТОЯННЫЙ ТОК ) возникнуть не может. В этом случае происходит перемещение носителей заряда от точек, имеющих большее значение потенциала к точкам с меньшим потенциалом, в результате которого потенциалы во всех точках цепи выравниваются, и происходит исчезновение электрического поля. Для существования постоянного тока необходимы источники тока — устройства, способные создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения — сторонних сил. Сторонними считаются все силы, отличные от кулоновских сил.
Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток. В источниках тока сторонние силы совершают работу по превращению какой-либо энергии в электрическую, либо энергию сторонних сил в энергию электрического поля.
Энергетической характеристикой источника тока является электродвижущая сила (см. ЭЛЕКТРОДВИЖУЩАЯ СИЛА ) ЭДС, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к величине этого заряда. Сила тока в цепи пpямо пpопоpциональна ЭДС источников в ней и обpатно пpопоpциональна полному сопpотивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ ) цепи (см. Ома закон (см. ОМА ЗАКОН ) ).
Природа сторонних сил может быть различной. Источники постоянного тока могут быть основаны на химическом (гальванические элементы и аккумулятоpы) или тепловом (теpмопаpы) действии. В гальванических элементах сторонние силы возникают за счет энергии химических реакций между электродами и электролитами Гальванические элементы и аккумуляторы преобразуют химическую энергию в электрическую. В генераторе сторонние силы образуются за счет механической энергии вращения ротора генератора и т.д.,термопары преобразуют внутреннюю энергию в электрическую, фотоэлементы — световую в электрическую.

Энциклопедический словарь. 2009 .

Смотреть что такое «СТОРОННИЕ СИЛЫ» в других словарях:

СТОРОННИЕ СИЛЫ — непотенциальные (неэлектростатические) силы, действующие на электрические заряды внутри источника тока и вызывающие их перемещение против направления действия сил электростатического поля. Обусловлены хим. реакциями, контактными явлениями,… … Большая политехническая энциклопедия

СТОРОННИЕ СИЛЫ — в электротехнике силы, действующие на заряж. частицы и тела, но не являющиеся ни силами электростати ч. поля (см. Электростатика), ни силами индуктированного электрического поля. С. с. обусловлены хим. реакциями, контактными явлениями, механич.,… … Большой энциклопедический политехнический словарь

ПОНДЕРОМОТОРНЫЕ СИЛЫ — вэлектродинамике силы, действующие на тела в электрич. и магн. полях. Термин П. с. введён во времена, когда наряду с весомыми телами признавалось существование невесомых субстанций (эфир, электрич. жидкость и т. п.); в совр. лексиконе иногда… … Физическая энциклопедия

электродвижущая сила — (эдс), величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой… … Энциклопедический словарь

постоянный ток — электрический ток, не изменяющийся во времени. * * * ПОСТОЯННЫЙ ТОК ПОСТОЯННЫЙ ТОК, электрический ток (см. ЭЛЕКТРИЧЕСКИЙ ТОК), величина и направление которого не изменяются с течением времени. Постоянный электрический ток может возникнуть только… … Энциклопедический словарь

Электродвижущая сила — (эдс) физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль… … Большая советская энциклопедия

Ома закон — для участка электрической цепи (проводника), не содержащего источников эдс, устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах: сила тока прямо пропорциональна напряжению и обратно… … Энциклопедический словарь

вольтметр — а; м. [от сл. вольт и греч. metron мера] Прибор для измерения напряжения в электрической цепи. * * * вольтметр прибор для измерения эдс или напряжения (в мкВ, мВ, В, кВ) в электрических цепях; включается параллельно нагрузке. * * * ВОЛЬТМЕТР… … Энциклопедический словарь

СИЛА — жен. источник, начало, основная (неведомая) причина всякого действия, движенья, стремленья, понужденья, всякой вещественой перемены в пространстве, или: начало изменяемости мировых явлений, Хомяков. Тяготенье основная сила природы. Сила есть… … Толковый словарь Даля

электромагнитная индукция — возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным током. * * *… … Энциклопедический словарь

1) Сторонние силы — силы неэлектрической природы, вызывающие перемещение электрических зарядов внутри источника постоянного тока.

Сторонними считаются все силы отличные от кулоновских сил.

2)Электродвижущая сила (ЭДС) — физическая величина. характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

I. Сторонние силы.

Сторонняя электродвижущая сила совершает положительную работу по перемещению положительного заряда в сторону возрастания потенциала, т.е. против сил электростатического поля (вследствие сопротивления потенциал электростатического поля понижается, положительный заряд двигается от большего потенциала к меньшему => должны существовать участки, на которых “+” заряд движется от меньшего потенциала к большему ).

Сторонняя сила не может иметь электростатического происхождения т.к. электростатическое поле — потенциальное и А по замкнутому пути =0 и ток не мог бы существовать, т.к. он должен совершать работу для преодоления сопротивления проводника.

Физическая природа сторонних сил весьма различна:

Они могут быть обусловлены:

а) химической, физической неоднородностью проводника при соприкосновении разнородных проводников (гальванические элементы; аккумуляторы — возникает контактная разность потенциалов при контакте твёрдого тела и жидкости)

б) физическая неоднородность при соприкосновении проводников различной температуры ( термоэлементы)

в) механические происхождения

г) электрическое происхождение — сила действует на заряд в электростатическом поле. возникающем по закону электромагнитной индукции.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *