Основное уравнение вращательного движения

Основное уравнение динамики вращательного движения

Уравнение (3) M = dL / dt называется основным уравнением динамики вращательного движения: скорость изменения момента импульса тела, вращающегося вокруг неподвижной точки, равна результирующему моменту относительно этой точки всех внешних сил, приложенных к телу.

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

Аналогия между поступательным и вращательным движениями

Между движением твердого тела вокруг неподвижной оси и движением отдельной материальной точки (или поступательным движением тела) существует тесная и далеко идущая аналогия. Каждой линейной величине из кинематики точки соответствует подобная величина из кинематики вращения твердого тела. Координате s соответствует угол &#&66; . линейной скорости
v – угловая скорость w . линейному (касательному) ускорению а – угловое ускорение &#&49; .

§ 3.3 Уравнение динамики вращательного движения твердого тела

Рассмотрим вначале материальную точку А массой m, движущуюся по окружности радиусом г (рис. 1.16). Пусть на нее действует постоянная сила F, направленная по касательной к окружности. Согласно второму закону Ньютона, эта сила вызывает тангенциальное ускорение Основное уравнение вращательного движенияилиF = maτ.

Используя соотношение aτ = βr. получаем F = m βr.

Умножим обе части написанного выше равенства на r.

Левая часть выражения (3.13) является моментом силы: М= Fr. Правая часть представляет собой произведение углового ускорения β на момент инерции материальной точки А: J= m r 2 .

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции(основное уравнение динамики вращательного движения материальной точки):

При постоянном моменте вращающей силы угловое ускорение будет величиной постоянной и его можно выразить через разность угловых скоростей:

Тогда основное уравнение динамики вращательного движения можно записать в виде

[Основное уравнение вращательного движения—момент импульса (или момент количества движения), МΔt — импульс момента сил (или импульс вращающего момента)].

Основное уравнение динамики вращательного движения можно записать в виде

Основное уравнение вращательного движения

§ 3.4 Закон сохранения момента импульса

Рассмотрим частый случай вращательного движения, когда суммарный момент внешних сил равен нулю. При вращательном движении тела каждая его частица движется с линейной скоростью υ = ωr, [r, — радиус окружности, которую описыва­ет частица массой m, ω — угловая скорость, одинаковая для всех точек тела].

Момент импульса вращающегося тела равен сумме моментов

импульсов отдельных его частиц :

Изменение момента импульса равно импульсу момента сил:

Если суммарный момент всех внешних сил, действующих на систему тела относительно произвольной неподвижной оси, равен нулю, т.е. М=0, то dL и векторная сумма моментов импульсов тел системы не изменяется с течением времени.

Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной (закон сохранения момента импульса):

d(Jω)=0 Jω=const (3.20)

Согласно закону сохранения момента импульса можно записать

где J1 и ω1 — момент инерции и угловая скорость в начальный момент времени, а и J2 и ω2 – в момент времени t.

Из закона сохранения момента импульса следует, что при М=0 в процессе вращения системы вокруг оси любое изменение расстояния от тел до оси вращения должно сопровождаться изменением скорости их обращения вокруг этой оси. С увеличением расстояния скорость вращения уменьшается, с уменьшением – возрастает. Например, гимнаст, совершающий сальто, чтобы успеть сделать в воздухе несколько оборотов, во время прыжка свёртывается клубком. Балерина или фигуристка, кружась в пируэте, разводит руки если хочет замедлить вращение, и, наоборот, прижимает их к телу, когда старается вращаться как можно быстрее.

Основное уравнение динамики вращательного движения.

Рассмотрим систему материальных точек, каждая из которых может перемещаться, оставаясь в одной из плоскостей, проходящих через ось Z (рис. 4.15). Все плоскости могут вращаться вокруг оси Z с угловой скоростью . Тангенциальная составляющая скорости i -ой точки может быть записана в виде: .

Тогда, учитывая, что

ОПРЕДЕЛЕНИЕ: моментом импульса относительно оси Z называется составляющая по этой оси момента импульса относительно точки «О», лежащей на оси (рис. 4.16): . можно показать, что . где – составляющая радиус-вектора . перпендикулярная оси Z; – составляющая вектора . перпендикулярная к плоскости, проходящей через ось Z и точку «m».

Подставив значение для в формулу для получим выражение для момента импульса точки относительно оси Z:

Это можно записать, воспользовавшись свойством двойного векторного произведения и учтя, что векторы и взаимно перпендикулярны.

Просуммировав это выражение по всем точкам и вынося общий множитель за знак суммы (S), найдем для момента импульса системы относительно оси Z следующее выражение:

где – момент инерции системы материальных точек относительно оси Z.

Тогда . Учитывая, что . получаем

Это основное уравнение динамики вращательного движения. По форме оно сходно с уравнением II-закона Ньютона: .

Абсолютно твердое тело можно рассматривать как систему материальных точек с неизменными расстояниями между ними. Для такой системы момент инерции есть величина постоянная относительно фиксированной оси. Следовательно, для абсолютно твердого тела основное уравнение динамики вращательного движения примет вид:

где – угловое ускорение тела;

– результирующий момент внешних сил, действующих на тело.

Сопоставив уравнения динамики вращательного движения с уравнениями динамики поступательного движения, легко заметить, что при вращательном движении роль силы играет момент силы, роль массы – момент инерции и т.д. (см. таблицу).

Основное уравнение динамики вращательного движения

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — скалярная величина.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

Где применяется закон сохранения момента импульса? Кто из нас не восхищается красотой движений фигуристов на льду, их стремительными вращениями и столь же стремительными переходами к медленному скольжению, сложнейшими сальто гимнастов пли прыгунов на батуте! В основе этого удивительного мастерства лежит тот же эффект, являющийся следствием закона сохранения момента импульса. Раскинув руки в стороны и заводя свободную ногу, фигурист сообщает себе медленное вращение вокруг вертикальной оси (см.рис.1). Резко «сгруппировавшись», он уменьшает момент инерции и получает приращение угловой скорости.

Если ось вращения тела является свободной (например, если тело свободно падает), то сохранение момента импульса не означает, что в инерциальнои системе отсчета сохраняется направление угловой скорости. За редким исключением мгновенная ось вращения, как говорят, прецессирует вокруг направления момента импульса тела. Это проявляется в кувыркании тела при падении. Однако у тел существуют так называемые главные оси инерции, совпадающие с осями симметрии этих тел. Вращение вокруг них является устойчивым, векторы угловой скорости и момента импульса совпадают по направлению, и никакого кувыркания пе происходит.

Если внимательно наблюдать за работой жонглера, то можно заметить, что, подбрасывая предметы, он придает им вращение. Только в этом случае булавы, тарелки, шляпы возвращаются ему в руки в том же положении, которое им было придано. Нарезное оружие дает лучшую прицельность и большую дальность, чем гладкоствольное. Выпущенный из орудия артиллерийский снаряд вращается вокруг своей продольной оси, и поэтому его полет является устойчивым.

Так же ведет себя хорошо известный всем волчок, или гироскоп (рис.2). В механике гироскопом называют любое массивное однородное тело, вращающееся вокруг оси симметрии с большой угловой скоростью. Обычно ось вращения выбирают так, чтобы момент инерции относительно этой оси был максимальным. Тогда вращение наиболее устойчиво.

Для создания свободного гироскопа в технике используют карданов подвес (рис.3). Он представляет собой две кольцевые обоймы, которые входят одна в другую и могут вращаться относительно друг друга. Точка пересечения всех трех осей 00, О’О’ и О»09quot; совпадает с положением центра масс гироскопа С. В таком подвесе гироскоп может вращаться вокруг любой из трех взаимно перпендикулярных осей, при этом центр масс относительно подвеса будет покоиться.

Пока гироскоп неподвижен, его без особых усилии можно повернуть вокруг любой оси. Если же гироскоп привести в быстрое вращение относительно оси 00 и после этого пытаться повернуть подвес, то ось гироскопа стремится сохранить свое направление неизменным. Причина такой устойчивости вращения связана с законом сохранения момента импульса. Так как момент внешних сил мал, то он не в состоянии заметно изменить момент импульса гироскопа. Ось вращения гироскопа, с направлением которой вектор момента импульса почти совпадает, не отклоняется далеко от своего положения, а лишь дрожит, оставаясь на месте.

Это свойство гироскопа находит широкое практическое применение. Летчику, например, необходимо всегда знать положение истинной земной вертикали по отношению к положению самолета в данный момент. Обыкновенный отвес для этой цели не годится: при ускоренном движения он отклоняется от вертикали. Применяют быстро вращающиеся гироскопы на кардановом подвесе. Если ось вращения гироскопа установить так, чтобы она совпадала с земной вертикалью, то, как бы самолет ни изменял свое положение в пространстве, ось сохранит направление вертикали. Такое устройство носит название гирогоризонта.

Если гироскоп находится во вращающейся системе, то его ось устанавливается параллельно оси вращения системы. В земных условиях это проявляется в том, что ось гироскопа в конце концов устанавливается параллельно оси вращения Земли, указывая направление север — юг. В морской навигации такой гироскопический компас является совершенно незаменимым прибором.

Подобное, на первый взгляд странное поведение гироскопа тоже находится в полном согласии с уравнением моментов и законом сохранения момента импульса.

Закон сохранения момента импульса является наряду с законами сохранения энергии и импульса одним важнейших фундаментальных законов природы и, вообще говоря, не выводится из законов Ньютона. Лишь в частном случае, когда рассматривается движение но окружностям частиц или материальных точек, совокупность которых образует твердое тело, такой подход является возможным. Как и другие законы сохранения, он, согласно теореме Нётер, связан с определенным видом симметрии.

Все темы данного раздела:

Принцип относительности в механике
Инерциальные системы отсчета и принцип относительности. Преобразования Галилея. Инварианты преобразования. Абсолютные и относительные скорости и ускорения. Постулаты специальной т

Векторная величина
Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве. Примеры векторных величин: скорость (

Вращательное движение материальной точки.
Вращательное движение материальной точки — движение материальной точки по окружности. Враща́тельное движе́ние — вид механического движения. При

Связь между векторами линейной и угловой скоростей, линейного и углового ускорений.
Мера вращательного движения: угол &#&66;, на который поверн.тся радиус-вектор точки в плоскости, нормальной к оси вращения. Равномерное вращательное движен

Скорость и ускорение при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и

Ускорение при криволинейном движении.
Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скор

Центр масс
центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами

Закон движения центра масс.
Воспользовавшись законом изменения импульса, получим закон движения центра масс: dP/dt = M∙dVc/dt = &#&31;Fi Центр масс системы движется так же, как дв

Галилея принцип относительности
· Инерциальная система отсчёта Инерциальная система отсчёта Галилея

Пластическая деформация
Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
. В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех ос

Кинетическая энергия
энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости

Кинетическая энергия.
Кинетическая энергия — энергия движущегося тела.(От греческого слова kinema — движение). По определению кинетическая энергия покоящегося в данной системе отсчета

Величина, равная половине произведения массы тела на квадрат его скорости.
[Ek]=Дж. Кинетическая энергия — величина относительная, зависящая от выбора СО, т.к. скорость тела зависит от выбора СО. Т.о.

Момент силы
· Момент силы. Рис. Момент силы. Рис. Момент силы, величин

Кинетическая энергия вращающегося тела
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материаль

Работа и мощность при вращении твердого тела.
Работа и мощность при вращении твердого тела. Найдем выражение для работы при вра

Основное уравнение динамики вращательного движения.

Основное уравнение динамики вращательного движения.

Это основное уравнение динамики вращательного движения тела: угловое ускорение вращающегося тела прямо пропорционально сумме моментов всех действующих на него сил относительно оси вращения тела и обратно пропорционально моменту инерции тела относительно этой оси вращения. Полученное уравнение аналогично по форме записи выражению второго закона Ньютона для поступательного движения тела.

второй закон Ньютона для вращательного движения Основное уравнение вращательного движения По определению угловое ускорение Основное уравнение вращательного движения и тогда это уравнение можнопереписать следующим образом Основное уравнение вращательного движения с учетом (5.9) Основное уравнение вращательного движения или Основное уравнение вращательного движения

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела Основное уравнение вращательного движения. равно импульсу момента Основное уравнение вращательного движения всех внешних сил, действующих на это тело.

Световая волна. Интерференция световых волн.

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок сдлинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц)[1].В широком смысле, используемом вне физической оптики, светом часто называ

ют любое оптическое излучение[2], то есть такие электромагнитные волны, длины которых лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра[3]. В этом случае в понятие «свет» помимо видимого излучения включаются какинфракрасное, так и ультрафиолетовое излучения.Раздел физики, в котором изучается свет, носит название оптика .Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой

1. Кинематика вращательного движения. Связь между векторами v и &#&69;.

вращательным движением абсолютно твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения, и описывают окружности, центры которых лежат на этой оси. Угловой скоростью вращения называется вектор, численно равный первой производной угла поворота тела по времени и направленный вдоль оси вращения по правилу правого винта:

Единица измерения угловой скорости радиан в секунду (рад/с).
Таким образом, вектор &#&69; определяет направление и быстроту вращения. Если &#&69;=const. то вращение называется равномерным.
Угловая скорость может быть связана с линейной скоростью &#&65; произвольной точки А. Пусть за время &#&16;t точка проходит по дуге окружности длину пути &#&16;s. Тогда линейная скорость точки будет равна:

Основное уравнение вращательного движения

Основное уравнение вращательного движения

При равномерном вращении его можно охарактеризовать периодом вращенияТ – временем, за которое точка тела совершает один полный оборот, т.е. поворачивается на угол 2&#&60;:

Основное уравнение вращательного движения

Число полных оборотов, совершаемых телом при равномерном движении по окружности, в единицу времени называется частотой вращения:

Основное уравнение вращательного движения

Основное уравнение вращательного движения

Для характеристики неравномерного вращения тела вводится понятие углового ускорения. Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

Выразим тангенциальную и нормальную составляющие ускорения точки A вращающегося тела через угловую скорость и угловое ускорение:

В случае равнопеременного движения точки по окружности (&#&49;=const ):

Основное уравнение вращательного движения////////////////////////////

где &#&69;0 — начальная угловая скорость.Поступательное и вращательное движения твердого тела являются лишь простейшими типами его движения. В общем случае движение твердого тела может быть весьма сложным. Однако в теоретической механике доказывается, что любое сложное движение твердого тела можно представить как совокупность поступательного и вращательного движений.
Кинематические уравнения поступательного и вращательного движений сведены в табл. 1.1.

Основное уравнение вращательного движения

• Первую пару уравнений Максвелла образуют

• Первое из этих уравнений связывает значения Е с временными изменениями вектора В и является по существу выражением закона электромагнитной индукции. Второе уравнение отражает то свойство вектора В, что его линии замкнуты (или уходят в бесконечность)

Работой называется скалярная величина, равная произведению проекции силы на направление перемещения и пути s ,проходимого точкой приложения силыAfs cos (1.53)Если сила и направление перемещения образуют острый угол (cos&#&45;9gt;0), работа положительна. Если угол &#&45; – тупой (cos&#&45;9lt;0),работа отрицательна. При &#&45; = &#&60;/2 работаравна нулю

Основное уравнение вращательного движения Скалярное произведение двух векторов равно:AB  AB cos.Выражение для работы (1.54) можно записать в виде скалярного произведения

Основное уравнение вращательного движения где под &#&16;s подразумевается вектор элементарного перемещения, который мы ранее обозначали через &#&16;r. s  vt ////////////

Мощность W есть величина, равная отношению работы &#&16;А к промежутку времени &#&16;t. за который она совершается:///////////////////////

Если работа меняется со временем, то вводится мгновенное значение мощности:///////////

2. Дифракция Френеля от простейших преград.

В состоянии равновесия

сила mg уравновешива ется упругой силой k &#&16;l0 :

умножив v &#&553; на определяемый

2. Поляризация при двойном лучепреломлении. Двойно́е лучепреломле́ние — эффект расщепления в анизотропных средах луча света на две составляющие. Впервые обнаружен датским ученымРасмусом Бартолином на кристалле исландского шпата. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным (o — ordinary), второй же отклоняется в сторону, и называется необыкновенным (e — extraordinary). Направление колебания вектора электрического поля необыкновенного луча лежит в плоскости главного сечения (плоскости, проходящей через луч и оптическую ось кристалла). Оптическая ось кристалла — направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления.

Нарушение закона преломления света необыкновенным лучом связанно с тем, что скорость распространения света (а значит и показатель преломления) волн с такой поляризацией, как у необыкновенного луча, зависит от направления. Для обыкновенной волны скорость распространения одинакова во всех направлениях.

Можно подобрать условия, при которых обыкновенный и необыкновенный лучи распространяются по одной траектории, но с разными скоростями. Тогда наблюдается эффект изменения поляризации. Например, линейно поляризованный свет, падающий на пластинку можно представить в виде двух составляющих (обыкновенной и необыкновенной волн), двигающихся с разными скоростями. Из-за разности скоростей этих двух составляющих, на выходе из кристалла между ними будет некоторая разность фаз, и в зависимости от этой разности свет на выходе будет иметь разные поляризации. Если толщина пластинки такова, что на выходе из неё один луч на четверть волны (четверть периода) отстаёт от другого, то поляризация превратится в круговую (такая пластинка называется четвертьволновой), если один луч от другого отстанет на пол волны, то свет останется линейно поляризованным, но плоскость поляризации повернётся на некоторый угол, значение которого зависит от угла между плоскостью поляризации падающего луча и плоскостью главного сечения (такая пластинка называется полуволновой).Качественно явление можно объяснить следующим образом. Из уравнений Максвелла для материальной среды следует, что фазовая скорость света в среде обратно пропорциональна величине диэлектрической проницаемости&#&49; среды. В некоторых кристаллах диэлектрическая проницаемость — тензорная величина — зависит от направления электрического вектора, то есть от состояния поляризации волны, поэтому и фазовая скорость волны будет зависеть от ее поляризации. Согласно классической теории света, возникновение эффекта связано с тем, что переменное электромагнитное поле света заставляет колебаться электроны вещества, и эти колебания влияют на распространение света в среде, а в некоторых веществах заставить электроны колебаться проще в некоторых определённых направлениях.Искусственное двойное лучепреломление. Помимо кристаллов двойное лучепреломление наблюдается и визотропных средах, помещённых в электрическое поле (эффект Керра), в магнитное поле (эффект Коттона — Мутона, эффект Фарадея), под действием механических напряжений (фотоупругость). Под действием этих факторов изначально изотропная среда меняет свои свойства и становится анизотропной. В этих случаях оптическая ось среды совпадает с направлением электрического поля, магнитного поля, направлением приложения силы.Отрицательные кристаллы — одноосные кристаллы, в которых скорость распространения обыкновенного луча света меньше, чем скорость распространения необыкновенного луча. В кристаллографии Отрицательными кристаллами называют также жидкие включения в кристаллах, имеющие ту же форму, что и сам кристалл.Положительные кристаллы — одноосные кристаллы, в которых скорость распространения обыкновенного луча света больше, чем скорость распространения необыкновенного луча.

Момент такой системы равен

Ленный вдоль оси диполя,

• Волновой фронт в так называемой волновой зоне, т. е.

• Система отсчета, в которой выполняется

• Примером инерциальной системы

Групповая скорость — это величина, характеризующая скорость распространения «группы волн» — то есть более или менее хорошо локализованной квазимонохроматической волны (волны с достаточно узким спектром). Групповая скорость во многих важных случаях определяет скорость переноса энергии и информации квазисинусоидальной волной (хотя это утверждение в общем случае требует серьёзных уточнений и оговорок).

Групповая скорость определяется динамикой физической системы, в которой распространяется волна (конкретной среды, конкретного поля итп). В большинстве случаев подразумевается линейность этой системы (точно или приближенно).

Для одномерных волн групповая скорость вычисляется из закона дисперсии:

Основное уравнение вращательного движения,

гдеОсновное уравнение вращательного движения— угловая частота,Основное уравнение вращательного движения— волновое число.

Групповая скорость волн в пространстве (например, трехмерном или двумерном) определяется градиентомчастоты по волновому векторуОсновное уравнение вращательного движения:

Основное уравнение вращательного движения

Замечание: групповая скорость вообще говоря зависит от волнового вектора (в одномерном случае — от волнового числа), то есть вообще говоря различна для разной величины и для разных направлений волнового вектора.

• Отсюда для работы на пути 1–2 получаем

• Следовательно, силы, действующие на заряд q’ в

поле неподвижного заряда q. являются

• где El – проекция вектора Е на направление

элементарного перемещения d l

Циркуляцией по контуру.

• Таким образом, для электростатического

• Для разных пробных значений q′ отношение

• ведичина &#&66; &#&472; называется потенциалом поля

Из 225 и226 получаем

С учетом (2.23) получаем

Для потенциальной энергии заряда q′ в поле

Из 226 вытекает что

Примеры мутных сред:

– дым (мельчайшие твердые частицы в газе)

– туман (капли жидкости в воздухе, газе)

– эмульсия (дисперсная система, состоящая из

Другие виды энергии

Второй закон Ньютона.02

Связь между напряженностью

Направление r равна

Щении вдоль касательной к

поверхности &#&64; на величину d &#&64;

Потенциал не изменится, так

что &#&66;/τ = 0. Но &#&66;/τ равна

Циальной поверхности будет

Совпадать с направлением

• Под емкостью конденсатора понимается физическая

величина, пропорциональная заряду q и обратно

• При параллельном соединении (рис. 50) на каждой из

• Поэтому напряжение на каждом из

Можно придать другой вид

Закон сохранения импульса

• Импульсом системы р называется

Центром тяжести системы.

• Скорость центра инерции получается

путем дифференцирования rс по

Учитывая, что mi vi есть рi. а &#&31;рi дает

импульс системы р, можно написать

Таким образом, импульс системы равен

Каждой из внутренних сил

По третьему закону

Ньютона можно написать fij

сил, действующая на тело i

Нулю, вследствие чего

Энергия системы зарядов.02

Рассмотрим систему из двух точечных зарядов q 1 и q 2,

находящихся на расстоянии r 12.

• Работа переноса заряда q 1 из бесконечности в точку,

где &#&66; 1 – потенциал, создаваемый зарядом q 2 в той

точке, в которую перемещается заряд q 1

• Аналогично для второго заряда получим:

Равна энергии трех зарядов

где &#&66;1 – потенциал, создаваемый зарядами q 2 и q 3 в той

точке, где расположен заряд q 1 и т. д.

Добавляя к системе зарядов последовательно

q 4, q 5 и т. д. можно убедиться в том, что в

случае N зарядов потенциальная энергия

где &#&66;i – потенциал, создаваемый в той точке,

где находится qi. всеми зарядами, кроме i -го.

Выражение (2.147) совпадает с (2.104), если положить

k = 1. Следовательно, в СИ закон Ампера имеет вид

• Согласно (2.148) на элемент тока d l действует в

• Заменив id l через S jdl [см. (2.111)], выражению закона

Ампера можно придать вид

• где dV – объем проводника, к которому приложена

• Разделив d f на dV. получим «плотность силы», т. е.

силу, действующую на единицу объема проводника:

f ед. об  jB (2.151)

• Эта сила равна сумме сил, приложенных к носителям

в единице объема. Таких носителей n. следователь-

Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии по спектруизлучения описывается формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется законом Вина.

Зако́н смеще́ния Ви́на даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела. &#&55;max = b /T ≈ 0,002898 м·К × T −1 (K),

где T — температура, а &#&55;max — длина волны с максимальной интенсивностью. Коэффициент b. называемыйпостоянной Вина, в системе СИ имеет значение 0,002898 м·К.

Для частоты светаОсновное уравнение вращательного движения(в герцах) закон смещения Вина имеет вид:

Основное уравнение вращательного движения

&#&45; ≈ 2,821439… — постоянная величина (корень уравненияОсновное уравнение вращательного движения),

T — температура (в кельвинах).

Третий закон Ньютона.

Основное уравнение динамики вращательного движения.

Это основное уравнение динамики вращательного движения тела: угловое ускорение вращающегося тела прямо пропорционально сумме моментов всех действующих на него сил относительно оси вращения тела и обратно пропорционально моменту инерции тела относительно этой оси вращения. Полученное уравнение аналогично по форме записи выражению второго закона Ньютона для поступательного движения тела.

второй закон Ньютона для вращательного движения Основное уравнение вращательного движения По определению угловое ускорение Основное уравнение вращательного движения и тогда это уравнение можнопереписать следующим образом Основное уравнение вращательного движения с учетом (5.9) Основное уравнение вращательного движения или Основное уравнение вращательного движения

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела Основное уравнение вращательного движения. равно импульсу момента Основное уравнение вращательного движения всех внешних сил, действующих на это тело.

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. В случае нарушения авторского права напишите сюда.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *