Принцип работы полевого транзистора

Устройство и принцип действия полевых транзисторов с изолированным затвором

Классификация полевых транзисторов

Лекция 12. Полевые транзисторы. Классификация, принцип действия, основные параметры, схемы включения и режимы работы

Полевым транзистором называется полупроводниковый прибор, ток в котором создаётся основными носителями зарядов (только электронами или только дырками). Заряды перемещаются в области, которая называется канал . Электрод, через который ток втекает в транзистор, называется исток (И). Прошедшие через канал заряды выходят из него через электрод, который называется сток (С). Движением зарядов управляет электрод, который называется затвор (З).

Классификация . В зависимости от типа проводимости канала различают полевые транзисторы с каналом типа p и типа n . а в зависимости от способа выполнения затвора – с управляющим p-n переходом и с изолированным затвором. Условное графическое обозначение полевых транзисторов представлено на рис. 12.1. Стрелка показывает направление от слоя p к слою n .

Рис. 12.1. Условное графическое обозначение полевых транзисторов

В 1926 году был открыт полевой эффект и указан его недостаток — поверхностные волны в металле не позволяли проникать полю затвора в канал. Однако в 1952 году Уильям Шокли исследовал влияние управляющего p-n перехода на ток в канале, а в 1959 году Джон Аталла и Дэвон Канг из Bell Labs изготовили полевой транзистор с изолированным затвором по технологии МОП металлический (Al) затвор, изолятор оксид кремния (SiO2 ) и канал-полупроводник (Si).

Система обозначений транзисторов была рассмотрена в лекции 6, и для полевых транзисторов, как и для биполярных, установлена отраслевым стандартом ОСТ 11336.919 – 81 и его последующими редакциями.

12.2. Устройство и принцип действия полевых транзисторов с управляющим p-n переходом

Рассмотрим физические процессы, происходящие в полевом транзисторе с управляющим p-n переходом и каналом n -типа, схематичное изображение которого представлено на рис. 12.2.

Рис. 12.2. Полевой транзистор с управляющим p-n переходом и каналом n -типа

Такая конструкция. в которой электроды расположены в одной плоскости, называется планарной. В исходном полупроводниковом материале методом диффузии создаётся легированная область n – канал. Затем на поверхности образуют сток, исток и затвор таким образом, что канал получается под затвором. Нижняя область исходного полупроводника – подложка – обычно соединяется с затвором. Исток подключают к общей точке источников питания, и напряжения на стоке и затворе измеряют относительно истока.

Изменение проводимости канала осуществляется изменением напряжения, прикладываемого к p-n переходам затвора и подложки. На рис. 12.3. представлены графики статических характеристик. Поскольку ток затвора не зависит от напряжения UЗИ. входная характеристика отсутствует. Вместо неё применяется сток — затворная характеристика передачи . Выходная характеристика – это зависимость тока стока от напряжения на стоке при фиксированном напряжении на затворе .

Рис. 12.3. Статические характеристики полевого транзистора с управляющим p-n переходом

При UЗИ = 0 толщина p-n – переходов затвора и подложки минимальна, канал «широкий9raquo; и проводимость его наибольшая. Под действием напряжения UСИ по каналу будет проходить ток, создаваемый основными носителями зарядов – электронами. На участке напряжений от 0 до UСИ.НАС ток будет нарастать и достигнет величины IС.нач – начального тока стока. Дальнейшее увеличение напряжения на стоке повышает напряжённость поля в запорном слое p-n переходов затвора и подложки, но не увеличивает ток стока. Когда напряжение на стоке достигнет UСИ.макс. может наступить электрический пробой по цепи сток – затвор, что показывает вертикальная линия роста тока на выходной характеристике.

Если отрицательное напряжение на затворе увеличивать, то, в соответствии с эффектом Эрли, толщина p-n – переходов затвора и подложки начнёт увеличиваться за счёт канала, сечение канала будет уменьшаться. Ток стока будет ограничен на меньшем уровне. Если и дальше увеличивать отрицательное напряжение на затворе, то, при некоторой его величине, называемой напряжением отсечки UЗИотс. p-n переходы затвора и подложки сомкнутся и перекроют канал. Движение электронов в канале прекратится, ток стока будет равен нулю, и не будет зависеть от напряжения на стоке.

Следовательно. полевой транзистор с управляющим p-n –переходом до напряжения на стоке UСИ.НАС работает как регулируемое сопротивление, а на горизонтальных участках выходных характеристик может использоваться для усиления сигналов в режиме нагрузки.

Отличие полевых транзисторов с изолированным затвором состоит в том, что у них между металлическим затвором и полупроводником-каналом находится слой диэлектрика, в качестве которого используется слой двуокиси кремния SiO2. выращенный на поверхности кристалла кремния методом высокотемпературного окисления. Существуют два типа полевых транзисторов с изолированным затвором: с индуцированным каналом и с встроенным каналом.

Рассмотрим принцип действия полевого транзистора с индуцированным каналом n -типа, упрощённая конструкция которого представлена на рис. 12.4.

Основой транзистора является подложка – пластина Si с проводимостью р типа и с высоким удельным сопротивлением. На поверхности подложки методом диффузии создаются две сильно легированные области с проводимостью n типа, не соединённые между собой. К ним подключают металлические контакты, которые будут выводами стока и истока. Поверхность пластины покрывают слоем SiO2. на который между стоком и истоком наносят слой металла – затвор. Подложку обычно электрически соединяют с истоком.

При UЗИ = 0, даже если между стоком и истоком приложено напряжение, транзистор закрыт, и в цепи стока протекает малый обратный ток p-n перехода между стоком и подложкой (рис. 12.4, а).

Рис. 12.4. Конструкция и принцип действия полевого транзистора с индуцированным каналом:

а – при UЗИ = 0; б – при UЗИ > порогового значения

При подаче на затвор положительного относительно истока напряжения электрическое поле затвора через диэлектрик проникает на некоторую глубину в приконтактный слой полупроводника, выталкивая из него вглубь полупроводника основные носители зарядов (дырки) и притягивая электроны. При малых напряжениях UЗИ под затвором возникает обеднённый основными носителями зарядов слой и область объёмного заряда, состоящего из ионизированных атомов примеси.

При дальнейшем увеличении положительного напряжения на затворе в поверхностном слое полупроводника происходит инверсия электропроводности (рис. 12.4, б). Образуется тонкий инверсный слой – канал – соединяющий сток с истоком. Напряжение на затворе, при котором образуется канал, называется пороговым напряжением.

Изменение напряжения на затворе вызывает изменение толщины и электропроводности канала, а, следовательно, и ток стока.

На рис. 12.5 представлены графики статических характеристик полевого транзистора с индуцированным каналом n -типа.

Рис. 12.5. Графики статических характеристик полевого транзистора с индуцированным каналом n -типа

Режим работы полевого транзистора, при котором канал обогащается носителями зарядов при увеличении напряжения на затворе, называется режимом обогащения .

Отсутствие тока стока при нулевом напряжении на затворе, а также одинаковая полярность напряжений UЗИ и UСИ у транзисторов с индуцированным каналом позволяет использовать их в экономичных цифровых микросхемах.

Рассмотрим теперь принцип действия полевого транзистора с встроенным каналом n -типа, упрощённая конструкция которого аналогична конструкции, представленной на рис. 12.4, б.

На стадии изготовления такого транзистора между областями стока и истока методом диффузии создаётся тонкий слаболегированный слой – канал – с таким же типом проводимости, как у стока и истока.

При UЗИ = 0, когда между стоком и истоком приложено напряжение, транзистор открыт, и в цепи стока протекает ток. Отрицательное напряжение, приложенное к затвору относительно истока, будет выталкивать электроны из канала и втягивать в канал дырки из подложки. Канал обедняется основными носителями зарядов, его толщина и электропроводность уменьшаются. При некотором отрицательном напряжении на затворе, называемом напряжением отсечки, канал закрывается, ток стока становится равным нулю.

Увеличение положительного напряжения на затворе вызывает приток электронов из подложки в канал. Канал обогащается носителями, ток стока возрастает.

Таким образом, транзистор с встроенным каналом может работать как в режиме обеднения. так и в режиме обогащения .

На рис. 12.6 представлены графики статических характеристик полевого транзистора с встроенным каналом n -типа.

Рис. 12.6. Графики статических характеристик полевого транзистора с встроенным каналом n -типа

Полевой транзистор

Полевые транзисторы — специальный класс транзисторов, которые могут использоваться в качестве выключателей, регуляторов тока или усилителей. Полевой транзистор, отличается от обычного транзистора тем, что ток в нем двигается не пересекая P-N перехода. Величиной тока можно управлять путем регулировки затворного потенциала, подаваемого через этот переход. Существует две основные разновидности полевых транзисторов: полевые транзисторы с затвором на основе перехода и полевые транзисторы с изолированным затвором.

Принцип работы полевого транзистора Полевой транзистор Обратите внимание на основы электричества и на приборы электроники.

Полевой транзистор с затвором на основе перехода

Полевой транзистор с затвором на основе перехода состоит из канальной области (канала) и затвора. Когда он работает, то ток протекает через канал от клеммы истока к клемме стока.

Канал изготовлен из материала n-типа, а затвор — из материала p-типа. Полевые транзисторы с затвором на основе перехода подобного типа называются полевыми транзисторами с затвором на основе перехода с каналом n-типа. На блок-схеме, показанной на рисунке ниже материал p-типа присоединен с обеих сторон к каналу. Однако во многих транзисторах с каналом n-типа этот материал p-типа бывает обернут вокруг канала сплошным кольцом, образуя, тем самым единый, неразрывный p-n переход. Принципы работы данного прибора в основном те же самые, несмотря на методы, использованные в его конструкции.

Схема полевого транзистора с затвором на основе перехода

Потенциал на затворе определяет проводимость на пути от истока до стока указанного транзистора. Затворный потенциал полевого транзистор с затвором на основе перехода, всегда имеет обратное смещение, чтобы снижать до минимума ток, протекающий через переход. Когда переход имеет обратное смещение, то током, протекающим по каналу, можно управлять с помощью изменения размеров обедненной области. Большие значения потенциала обратного смещения вызывают расширение обедненной области, что ограничивает ток, протекающий по каналу. И наоборот, с помощью уменьшения потенциала обратного смещения, и, тем самым, сокращения размеров обеденной области, создается возможность для протекания большего тока от истока к стоку. Состояние обратного смещения гарантирует, что никакой ток не течет самостоятельно через p-n переход.

Полевой транзистор с изолированным затвором

Полевые транзисторы с изолированным затвором отличаются от полевых транзисторов с затвором на основе перехода как по своей конструкции, так и по принципу работы. Обычно в полевых транзисторах с изолированным затвором, как это видно из их названия, затвор изолируется от основного корпуса транзистора тонким слоем окиси металла или каким-нибудь другим изолирующим материалом. Транзисторы этого типа, в которых в качестве изолятора использована окись металла, часто называют полевыми транзисторами со структурой металл-оксид-полупроводник.

Изоляция затвора в этих транзисторах от их основной части обеспечивает им двойное преимущество по сравнению с полевыми транзисторами с затвором на основе перехода. Одно из этих преимуществ заключается в том, что подобная изоляция предотвращает движение тока через затвор независимо от полярности, подаваемого на затвор потенциала. А это, в свою очередь, создает второе преимущество, которое состоит в том, что эти транзисторы могут действовать постоянно, независимо от того подается ли на затвор положительный или отрицательный потенциал.

Схема полевого транзистора с изолированным затвором

Однопереходный транзистор специальный транзистор, генерирующий повторяющиеся волны

Тестеры для транзисторов измеряет усиление по току и ток утечки

Стабилизаторы напряжения прибор, который обеспечивает стабильный уровень напряжения

Повторитель напряжения имеет высокое входное сопротивление, низкое выходное сопротивление и коэффициент усиления равный единице

Умножитель напряжения контур, способный выдать напряжение, в несколько раз превышающее полученное

/ Лекция 5 Полевые транзисторы и принцип их работы

1.5. Полевые транзисторы, принцип их работы

Наряду с биполярными транзисторами нашли применение полевые транзисторы, в которых рабочие носители заряда переносятся по каналу, формируемому в полупроводнике n или p типа таким образом, что они не проходят через границыp иnслоев. По способу формирования канала эти приборы подразделяются на транзисторы сp-n переходом, со встроенным каналом и индуцируемым каналом. Два последних типа относятся к МДП-транзисторам.

В отличие от биполярного транзистора, где происходит токовое управление потоком рабочих носителей заряда, в полевом транзисторе управление потоком осуществляется электрическим полем, что и дало наименование прибору. Преимуществом полевых транзисторов является весьма малый уровень мощности, который потребляется для управления потоком, поскольку ток входной цепи практически равен нулю. Однако эти транзисторы уступают биполярным по уровню выходной мощности.

Принцип работы полевого транзистора

Рис.1.11. Структура полевого транзистора

Структура транзистора с p-n переходом схематически представлена на рис.1.11. Прибор имеет три электрода: исток (аналог эмиттера в биполярном транзисторе), сток (аналог коллектора) и затвор (аналог базе). На рис.1.11 показано включение этого транзистора по схеме с общим истоком, аналогичной схеме ОЭ включения биполярного транзистора. Канал протекания рабочих носителей заряда (в рассматриваемом случае электронов), формируемый в полупроводникеn-типа, заключен между двумяp-n переходами. Канал с двух сторон снабжен двумя электродами: истоком, с которого носители заряда начинают движение, и стоком, где это движение заканчивается. Третий электрод, затвор, соединен сp-слоями. Между истоком и стоком приложено напряжениеUПринцип работы полевого транзистора, обеспечивающее перенос носителей заряда между этими электродами. Управляющим (входным) напряжением являетсяUПринцип работы полевого транзистора. На затвор подается “минус” относительно истока. Таким образом,p-n переход находится в закрытом состоянии, что обусловливает малую величину тока в цепи затвора. При увеличении отрицательного значения напряженияUПринцип работы полевого транзисторапроисходит увеличение шириныp-n перехода за счетn- слоя канала, а тем самым уменьшение ширины канала (см. рис.1.12,а). В результате происходит увеличение сопротивления канала, что и обеспечивает управление потоком электронов.

Принцип работы полевого транзистора

Рис.1.12. Сужение канала полевого транзистора сpnпереходомпри приложении напряжений: а —UПринцип работы полевого транзистора, б —UПринцип работы полевого транзистора

Напряжение UПринцип работы полевого транзисторатакже изменяет ширину канала за счет изменения шириныp-n перехода. Однако, поскольку оно равномерно приложено по длине канала, то его ширина уменьшается по мере приближения к стоку, к которому подведен “плюс” (см. рис.1.12,б). Очевидно, степень уменьшения ширины канала, а, следовательно, его сопротивление будет увеличиваться при увеличении напряженияUПринцип работы полевого транзистора. Этим объясняется вид выходной, стоковой характеристики, приведенной на рис.1.13. При малых значениях напряженияUПринцип работы полевого транзистораобусловленное этим напряжением уменьшение ширины канала не существенно. В данных условиях на движения носителей заряда в канале оказывает влияние только напряжение между стоком и истоком, в результате чего ток стокаIПринцип работы полевого транзистора резко увеличивается с ростом UПринцип работы полевого транзистора. При больших значениях напряжения UПринцип работы полевого транзистораток носителей заряда находится под влиянием двух противодействующих факторов. С увеличением напряжения, с одной стороны, увеличивается скорость переноса носителей заряда от истока к стоку, а с другой стороны, — увеличивается сопротивление канала. В результате величина тока стока лишь немного растет при увеличении напряженияUПринцип работы полевого транзистора, в приборе устанавливается режим насыщения, ограничивающийся сверху пробивным напряжениемUси проб . Режимы пробоя на рис.1.13 (а также на рис.1.15) не указаны. Увеличение отрицательного напряженияUПринцип работы полевого транзистора увеличивает сопротивление канала, что обусловливает смещение вольт-амперной характеристики в область малых значений токаIПринцип работы полевого транзистора. При этом также уменьшается величина напряжения пробоя.

Принцип работы полевого транзистора

Рис.1.13. Стоковая характеристика полевого

Наименование МДП-транзисторы (“металл – диэлектрик – проводник”) связано с конструктивными особенностями этих приборов. Они отражены на рис.1.14, на котором приведена схема конструкции транзистора с встроенным каналом. На поверхности подложки, которая выполнена из полупроводника типа p, создается канал n-типа с областями истока и стока. Полупроводник покрыт окисной пленкой, на которую наносится металлическая пленка, выполняющая функцию затвора. Таким образом, канал оказывается изолированным от затвора диэлектрической, окисной пленкой. В общем случае МДП-транзистор имеет четыре электрода. Четвертый электрод соединен с подложкой. Схема включения такого транзистора показана на рис.1.14.

Принцип работы полевого транзистора

Рис.1.14. Структура МДП-транзистора

Технология изготовления МДП-транзисторов с индуцированным каналом обусловила их широкое применение в составе микросхем. В таких транзисторах специально канал не создается. Он формируется (индуцируется) на поверхности подложки при положительном напряжении затвор- исток, когда электрическое поле затвора вытягивает из подложки электроны, за счет которых создается канал протекания тока стока. Очевидно, в МДП-транзисторе с индуцированным каналом при нулевом напряжении UПринцип работы полевого транзистораток стока отсутствует, а с увеличением напряжения затвор-исток увеличивается ток стока, что иллюстрируется рис.1.15, на котором приведена стоковая характеристика такого прибора.

Принцип работы полевого транзистора

Рис.1.15. Стоковые характеристики МДП-транзистора

с индуцированным каналом

Следует отметить, что в биполярном транзисторе ток коллектора также увеличивается с увеличением входного напряжения (см. рис.1.8 и 1.9). Однако, начальные участки вольт-амперных характеристик выходных цепей биполярных и полевых транзисторов отличаются. Если в биполярном транзисторе в области малых напряжений UКЭ наклон вольт-амперных характеристик не зависит от тока базы, т.е. от входного напряжения, то в полевом транзисторе, как видно из рис.1.15, эта зависимость существенна. Принципы работы МДП-транзисторов были рассмотрены на примере приборов сn-каналом. Аналогичным образом функционируют и транзисторы сp-каналом, в которых рабочими носителями заряда являются дырки, а подложка выполнена из полупроводникового материалаn-типа. В таких приборах направление токов и полярность напряжений будут противоположны тем, которые имеются у приборов сn-каналом. На рис.1.16 приведены схемные обозначения полевых транзисторов.

Принцип работы полевого транзистора

Рис.1.16. Схемные обозначения полевых транзисторов:

3 — МДП-транзистор с встроеннымn-каналом,

4 — МДП-транзистор с встроеннымp— каналом,

5 — МДП-транзистор с индуцированнымn-каналом,

6 — МДП-транзистор с индуцированнымp— каналом

Входное и выходное сопротивления полевых транзисторов, в отличие от биполярных, имеют существенную емкостную компоненту. Это учитывается схемой замещения для переменных токов и напряжений. Наиболее распространенная схема замещения полевого транзистора приведена на рис.1.17, в которой отражено наличие трех межэлектронных емкостей: Сзи – затвор – исток,Сси – сток – исток,Сзс – затвор – сток. Первые две обусловлены, в основном, барьерной емкостью закрытогоp-n- перехода, примыкающего как к истоку, так и к стоку. Поэтому их величины, составляющие 10 – 40 пФ, в три – пять раз превышают величину емкости сток – исток.

Принцип работы полевого транзистора

Рис.1.17. Схема замещения полевого транзистора

Наличие в схеме источника тока Suвх отражает зависимость выходного тока от входного напряжения, гдеS– крутизна передаточной характеристики, определяемая соотношением

Зависимость выходного тока от напряжения сток – исток учитывается сопротивлением ri. величина которого определяется как

Величины параметров Sи ri рассчитываются с использованием стоковой характеристики транзистора.

Транзисторы — принцип работы и основные параметры.

Как устроен транзистор.

Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это — кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.

Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются — база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу — к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

Т.е. — для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую — рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим — А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения — т. е выходное сопротивление транзистора и нагрузки примерно равны. Если подавать теперь на переход база — эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер — коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала — будет происходить усиление сигнала.

Если увеличивать напряжение смещения база — эмиттер дальше, это приведет к росту тока в этой цепи, и как результат — еще большему росту тока эмиттер — коллектор. В конце, концов ток перестает расти — транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения — транзистор закроется, ток эмиттер — коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа. Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например — в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.

Принцип работы полевого транзистора

Полевой транзистор, как и биполярный имеет три электрода. Они носят названия — сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

Т. е. — транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает — транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).

Принцип работы полевого транзистора

Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) — аналог ОЭ биполярного транзистора; с общим стоком (ОС) — аналог ОК биполярного транзистора; с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы — до 100 мВт ;
транзисторы средней мощности — от 0,1 до 1 Вт;
мощные транзисторы — больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) — от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. — у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор — величина падения напряжения между этими электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор — исток, т. е.

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:
1. IDmax — максимальный ток стока.

2.UDSmax — максимальное напряжение сток-исток.

3.UGSmax — максимальное напряжение затвор-исток.

4.РDmax — максимальна мощность, которая может выделяться на приборе.

5. ton — типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

6.toff — типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

7.RDS(on)max — максимальное значение сопротивления исток — сток в включенном(открытом) состоянии.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

автор: admin | 6 июля 2011 | Просмотров: 56279

У них в создании электрического тока участвуют носители заряда только одного типа (электроны либо дырки).

Полевые транзисторы бывают двух видов:

— с управляющим p-n-переходом;
— со структурой металл-диэлектрик-полупроводник (МДП)

Транзистор с управляющим p-n-переходом представляет собой пластину (участок) из полупроводникового материала с электропроводностью p- либо n-типа, к торцам которой подсоединены электроды — сток и исток. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого выведен электрод — затвор.

Принцип работы полевого транзистораПринцип работы полевого транзистораПринцип работы полевого транзистораПринцип работы полевого транзистора

Полевым транзистором называется полупроводниковый прибор, Усилитель ные свойства которого обусловлены потоком основных но­сителей, протекающим через проводящий канал, управляемый электричёским полем. Действие полевого транзистора обусловлено носителями заряда одной полярности.

Принцип работы полевого транзистора

Характерной особенностью полевого транзистора является высокий коэффи­циент усиления по напряжению и высо­кое входное сопротивление.
Простейший, полевой транзистор со­стоит из пластинки полупроводникового материала с одним p-n-переходом в цент­ральной части и с невыпрямляющими контактами по краям (рис 1). Действие это­го прибора основано на зависимости тол­щины области пространственного заряда (ОПЗ) p-n-перехода от приложенного к нему напряжения. Поскольку запирающий слой, почти полностью лишен подвижных носителей заряда, его проводимость близ­ка к нулю.

Таким образом, в пластинке по­лупроводника, не охваченной запирающим слоем, образуется токопроводящий канал, сечение которого зависит от толщины ОПЗ. Если включить источник питания Е2, как, показано на [рис. 6.1, то через пластинку полупроводника, между выпрямляющи­ми контактами потечет ток. Область в полупроводнике, в которой регулируется поток носителей заряда, на­зывают проводящим каналом.

Принцип работы полевого транзистора

Электрод полевого транзистора, через который в проводящий ка­нал втекают носители заряда, называют истоком, а электрод, через который они вытекают из канала, — стоком.

Электрод полевого транзистора, на который подается электриче­ский сигнал» используемый для управления величиной тока, проте­кающего через канал, называют затвором.

К каждому из электродов присоединяются выводы, носящие соот­ветствующие названия (истока, стока и затвора). Затвор выполняет роль сетки вакуумного триода. Исток и сток соответствуют катоду и аноду. Величина тока в канале (при Е2 и Rн = const) зависит от сопротивления участка пластинки между стоком и истоком, т. е. в зна­чительной степени от эффективной площади поперечного сечения ка­нала.
Источник E1 создает отрицательное напряжение на затворе, что приводит к увеличению толщины запирающего слоя и к уменьшению сечения канала. С уменьшением сечения канала увеличивается со­противление между истоком и стоком и снижается величина тока Iс. Уменьшение напряжения на затворе вызывает уменьшение сопротив­ления канала и возрастание тока Iс. Следовательно, ток, протекающий через канал, можно модулировать сигналами, приложенными к за­твору.

Поскольку р-n — переход включен в обратном направлении, входное сопротивление прибора очень велико.

Отрицательное напряжение, приложенное к затвору относитель­но истока, может вызвать такое расширение ОПЗ, при котором токопроводящий канал окажется перекрытым. Это напряжение называют пороговым или напряжением отсечки. Оно соответствует напряжению запирания электронной лампы.
К р-n — переходу приложено не только «поперечное9raquo; напряжение Е1 но и «про9shy;дольное9raquo; напряжение, падающее на рас­пределенном сопротивлении канала, созда­ваемое током, протекающим от истока к стоку. Поэтому ширина ОПЗ у стока увеличивается, а эффективное сечение канала соответственно умень­шается (см. рис. 1). Приборы данного типа называют полевыми транзисторам и с затвором в виде р-n перехода или с управляющим р-n- переходом.

Другие новости по теме:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *