Строение нуклеиновых кислот

Нуклеиновые кислоты

Нуклеиновые кислоты — это биополимеры, наряду с белками играющие наиважнейшую роль в клетках живых организмов. Нуклеиновые кислоты отвечают за хранение, передачу и реализацию наследственной информации.

Мономерами нуклеиновых кислот являются нуклеотиды. таким образом они сами представляют полинуклеотиды .

Строение нуклеотидов

Каждый нуклеотид, входящий в состав нуклеиновой кислоты, состоит из трех частей:

пятиуглеродного сахара (пентозы),

Химические связи между частями нуклеотида ковалентные, образующиеся в результате реакций конденсации (т. е. с выделением молекул воды). Конденсация обратна гидролизу.

В нуклеотиде первый атом углерода пентозы связан с азотистым основанием (связь C-N), а пятый — с фосфорной кислотой (фосфоэфирная связь: C-O-P).

Существуют два основных типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). В составе РНК сахар представлен рибозой, а в ДНК — дезоксирибозой. В обоих случаях в нуклеиновых кислотах встречается циклический вариант пентоз. Дезоксирибоза отличается от рибозы отсутствием атома кислорода при втором атоме углерода.

Строение нуклеиновых кислот

Наличие дополнительной гидроксильной группы (-OH) у рибозы делает РНК молекулой, легче вступающей в химические реакции.

В составе нуклеотидов нуклеиновых кислот обычно встречаются следующие азотистые основания: аденин (А), гуанин (Г, G), цитозин (Ц, C), тимин (Т), урацил (У, U).

Строение нуклеиновых кислот

Аденин и гуанин относятся к пуринам, остальные — к пиримидинам. В молекуле пуринов имеется два кольца, а у пиримидинов только одно. Урацил почти не встречается в ДНК, а тимин весьма редок для РНК. То есть для ДНК характерны аденин, гуанин, тимин и цитозин. Для РНК — аденин, гуанин, урацил и цитозин. Тимин схож с урацилом, отличатся от него лишь метилированным (имеющим группу -CH3 ) пятым атомом кольца.

Химическое соединение сахара с азотистым основанием называется нуклеозидом. Ниже представлены нуклеозиды, где в качестве сахара выступает рибоза.

Строение нуклеиновых кислот

Нуклеозид, реагируя с фосфорной кислотой, образует нуклеотид. Ниже представлен нуклеотид, где в качестве сахара выступает дезоксирибоза, а в качестве азотистого основания — аденин.

Строение нуклеиновых кислот

Именно наличие остатков фосфорной кислоты в молекулах нуклеиновых кислот определяет их кислотные свойства.

Строение нуклеиновых кислот

Нуклеотиды линейно соединяются между собой, образуя длинные молекулы нуклеиновых кислот. Цепочки многих молекул ДНК являются самыми длинными существующими полимерами. Длина молекул РНК обычно существенно меньше ДНК, но при этом различна, т. к. зависит от типа РНК.

При образовании полинуклеотида (нуклеиновой кислоты) остаток фосфорной кислоты предыдущего нуклеотида соединяется с 3-м атомом углерода пентозы следующего нуклеотида. Связь образуется такая же как между 5-м атомом углерода сахара и фосфорной кислотой в самом нуклеотиде – ковалентная фосфоэфирная.

Таким образом, остов молекул нуклеиновых кислот составляют пентозы, между которыми образуются фосфодиэфирные мостики (по-сути остатки пентоз и фосфорных кислот чередуются). От остова в сторону отходят азотистые основания. На рисунке ниже представлена часть молекулы рибонуклеиновой кислоты.

Строение нуклеиновых кислот

Следует отметить, что молекулы ДНК обычно не только длиннее РНК, но и состоят из двух цепей, соединенных между собой водородными связями, возникающими между азотистыми основаниями. Причем данные связи образуются согласно принципу комплементарности, по которому аденин комплементарен тимину, а гуанин — цитозину.

Строение нуклеиновых кислот

Подобные связи могут возникать и в РНК (но здесь аденин комплементарен урацилу). Однако в РНК водородные связи образуются между нуклеотидами одной цепи, в результате чего молекула нуклеиновой кислоты сворачивается различным образом.

Строение нуклеиновых кислот

Пуриновые основания– производные пурина, остатки кото­рых входят в состав нуклеиновых кислот: аденин, гуанин.

Строение нуклеиновых кислот

Нуклеиновые кислоты – это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передаче наследственной информации в живых организ­мах. Молекулярная масса нуклеиновых кислот может меняться от 100 тыс. до 60 млрд. Они были открыты и выделены из клеточных ядер еще в XIX веке, однако их биологическая роль была выяснена только во второй половине XX века.

Строение нуклеиновых кислот можно установить, анализируя продукты их гидролиза. При полном гидролизе нуклеиновых кислот образуется смесь пиримидиновых и пуриновых оснований, моноса­харид (&#&46;-рибоза или &#&46;-дезоксирибоза) и фосфорная ки­слота. Это означает, что нуклеиновые кислоты построены из фраг­ментов этих веществ.

Строение нуклеиновых кислот

При частичном гидролизе нуклеиновых кислот образуется смесь нуклеотидов.

Нуклеотид – основная структурная единица нуклеиновых ки­слот, их мономерное звено, молекулы которых построены изостатков фосфорной кислоты, моносахарида (рибозы или дезоксирибозы) и азотистого основания (пуринового или пиримидинового). Остаток фосфорной кислоты связан с 3-м или 5-м атомом углерода моносахарида, а ос­таток основания – с первым атомом углерода моносахарида. Об­щие формулы нуклеотидов:

Строение нуклеиновых кислот

где X = ОН для рибонуклеотидов, построенных на основе рибозы, и X = Н для дезоксирибонуклеотидов, построенных на основе дезокскрибозы. В зависимости от типа азотистого основания, различают пуриновые и пиримидиновые нуклеотиды.

Нуклеиновые кислоты, состоящие из рибонуклеотидов, называют рибонуклеиновыми кислотами (РНК). Нуклеиновые кислоты, состоящие из дезоксирибонуклеотидов, на­зывают дезоксирибонуклеиновыми кислотами (ДНК).В состав молекул ДНК входят нуклеотиды, содержащие аденин, гуанин, цитозин и тимин. В состав мо­лекул РНК входят нуклеотиды, содержащие основания аденин, гуа­нин, цитозин и урацил (вместо тимина).

Для обозначения ос­нований используют однобуквенные сокращения: аденин – А, гуанин – G, тимин – Т, цитозин – С, урацил – U.

Свойства ДНК и РНК определяются последовательностью осно­ваний в полинуклеотидной цепи и пространственным строением це­пи. Последовательность оснований содержит генетиче­скую информацию, а остатки моносахаридов и фосфорной кислоты играют структурную роль (носители оснований).

При частичном гидролизе нуклеотидов отщепляется остаток фосфорной кислоты, и образуются нуклеозиды, молекулы которых состоят из остатка пуринового или пиримидинового основания, свя­занного с остатком моносахарида – рибозы или дезоксирибозы Ниже приведены структурные формулы основных пуриновых и пиримидиновых нуклеозидов:

Строение нуклеиновых кислот

Строение нуклеиновых кислот

В молекулах ДНК и РНК отдельные нуклеотиды связаны в еди­ную полимерную цепь за счет образования сложноэфирных связей между остатками фосфорной кислоты и гидроксильными группами при 3-м и 5-м атомах углерода моносахарида.

Строение нуклеиновых кислот

Строение нуклеиновых кислотПространственная структура полинуклеотидных цепей ДНК и РНК была определена методом рентгеноструктурного анализа. Од­ним из самых крупных открытий биохимии XX века оказалась мо­дель трехмерной структуры ДНК, которую предложили в 1953 г Дж. Уотсон и Ф. Крик. Эта модель состоит в следующем.

1. Молекула ДНК представляет собой двойную спираль и состо­ит из двух полинуклеотидных цепей, закрученных в противополож­ные стороны вокруг общей оси.

2. Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.

3. Диаметр спирали 20 Л (2 нм), расстояние между соседними основаниями вдоль оси спирали 3,4 А, они повернуты относительно друг друга на 36°. Таким образом, на полный виток спирали (360°) приходится 10 нуклеотидов, что соответствует длине спирали по оси 34 А.

Две спирали удерживаются вместе водородными связями ме­жду парами оснований. Важнейшее свойство ДНК – избиратель­ность в образовании связей (комплементарность). Размеры основа­ний и двойной спирали подобраны в природе таким образом, что тимин (Т) образует водородные связи только с аденином (А), а цитозин (С) – только с гуанином (G). Обратите внимание на то, что в первой паре оснований две водородные связи, а во второй паре – три.

Строение нуклеиновых кислот

Схема образования водородных связей в молекуле ДНК

Таким образом, две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей однозначно определяет последовательность нуклеотидов в другой.

В каждой паре оснований, связанных водородными связями, од­но из оснований – пуриновое, а другое – пиримидиновое. Отсюда следует, что общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (реп­ликации ) этой молекулы. Этот сложный процесс можно упрощенно представить следующим образом.

Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.

Таким образом, после репликации образуются две дочерние мо­лекулы ДНК, в каждой из которых одна спираль взята из родитель­ской ДНК, а другая (комплементарная) синтезирована заново. Син­тез новых цепей происходит с участием фермета ДНК-полимеразы.

Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от не­скольких тысяч у простейших вирусов до сотен миллионов у чело­века. Каждой тысяче пар оснований соответствует длина оси спирали (называемая контурной длиной) 3400 А и молекулярная масса примерно 660 тыс.

В отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи. Число нуклеотидов в цепи колеблется от 75 до не­скольких тысяч, а молекулярная масса РНК может изменяться в пределах от 25 тыс. до нескольких млн.

Полинуклеотидная цепь РНК не имеет строго определенной структуры. Она может складываться сама на себя и образовывать отдельные двухцепочечные участки с водородными связями между пуриновыми и пиримидиновыми основаниями.

Водородные связи в РНК не подчиняются таким строгим прави­лам, как в ДНК. Так, гуанин (G) может образовывать водородные связи как с урацилом (U), так и с цзатозином (С). Поэтому двухцепо­чечные участки РНК некомплементарны, и нуклеотидный состав РНК может меняться в широких пределах.

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Нуклеиновые кислоты. ДНК: строение, свойства и функции. РНК: строение, виды, функции

Нуклеиновые кислоты – это фосфорсодержащие нерегулярные гетерополимеры. Открыты в 1868 Г.Ф. Мишером.

Нуклеиновые кислоты содержатся в клетках всех живых организмов. Причем, каждый вид организмов содержит свой, характерный только для него набор нуклеиновых кислот. В природе насчитывается более 1 200 000 видов живых организмов – от бактерий и человека. Это значит, что существует около 10 10 различных нуклеиновых кислот, которые построены всего лишь из четырех азотистых оснований. Каким образом четыре азотистых основания могут закодировать 10 10 нуклеиновых кислот? Приблизительно так же, как и мы кодируем наши мысли на бумаге. Мы устанавливаем последовательность из букв алфавита, группируя их в слова, а природа кодирует наследственную информацию, устанавливая последовательность из множества нуклеотидов.

Нуклеотид – сравнительно простой мономер, из молекул которого построены нуклеиновые кислоты. Каждый нуклеотид состоит из: азотистого основания, пятиуглеродного сахара (рибозы или дезоксирибозы) и остатка фосфорной кислоты. Главной частью нуклеотида является азотистое основание.

Азотистые основания имеют циклическую структуру, в состав которой наряду с другими атомами (С, О, Н) входят атомы азота. Благодаря этому эти соединения получили название азотистые. С атомами азота связаны и важнейшие свойства азотистых оснований, например, их слабоосновные (щелочные) свойства. Отсюда эти соединения и получили название «основания».

В природе в состав нуклеиновых кислот входят всего пять из известных азотистых оснований. Они встречаются во всех типах клеток, начиная от микоплазм и до клеток человека.

Это пуриновые азотистые основания Аденин (А) и Гуанин (Г) и пиримидиновые Урацил (У), Тимин (Т) и Цитозин (Ц).Пуриновые основания являются производными гетероцикла пурина, а пиримидиновые – пиримидина. Урацил входит только в состав РНК, а тимин – в ДНК. А, Г и Ц встречаются как в ДНК, так и в ДНК.

В составе нуклеиновых кислот встречаются два типа нуклеотидов: дезоксирибонуклеотиды – в ДНК, рибонуклеотиды – РНК. Структура дезоксирибозы отличается от структуры рибозы тем, что Строение нуклеиновых кислот при втором атоме углерода дезоксирибозы нет гидроксильной группы.

В результате соединения азотистого основания и пентозы образуется нуклеозид. Нуклеозид, соединенный с остатком фосфорной кислоты – нуклеотид :

азотистое основание + пентоза = нуклеозид + остаток фосфорной кислоты = нуклеотид

Соотношение азотистых оснований в молекуле ДНК описывают Правила Чаргаффа :

1. Количество аденина равно количеству тимина (А = Т).

2. Количество гуанина равно количеству цитозина (Г = Ц).

3. Количество пуринов равно количеству пиримидинов (А + Г = Т + Ц), т.е. А + Г/Т + Ц = 1.

4. Количество оснований с шестью аминогруппами равно количеству оснований с шестью кетогруппами (А + Ц = Г + Т).

5. Соотношений оснований А + Ц/Г + Т является величиной постоянной, строго видоспецифичной: человек – 0,66; осьминог – 0,54; мышь – 0,81; пшеница – 0,&4; водоросли – 0,64-1,76; бактерии – 0,45-2,57.

На основании данных Э. Чаргаффа о соотношении пуриновых и пиримидиновых оснований и результатов рентгеноструктурного анализа, полученных М. Уилкинсом и Р. Франклин в 1953 г. Дж. Уотсон и Ф. Крик предложили модель молекулы ДНК. За разработку двуспиральной молекулы ДНК Уотсон, Крик и Уилкинс в 1962 г. Были удостоены Нобелевской премии.

Строение нуклеиновых кислот Молекула ДНК имеет две цепи, расположенные параллельно друг другу, но в обратной последовательности. Мономерами ДНК являются дезоксирибонуклеотиды: адениловый (А), тимидиловый (Т), гуаниловый (Г) и цитозиловый (Ц). Цепи удерживаются между собой за счет водородных связей: между А и Т две, между Г и Ц три водородные связи. Двойная спираль молекулы ДНК закручена в виде спирали, причем один виток включает 10 пар нуклеотидов. Витки спирали удерживаются водородными связями и гидрофобными взаимодействиями. В молекуле дезоксирибозы свободные гидроксильные группы находятся в положении 3’ и 5’. По этим положениям между дезоксирибозой и фосфорной кислотой может образовываться сложная диэфирная связь, которая соединяет друг с другом нуклеотиды. При этом один конец ДНК несет 5’-OH – группу, а другой – 3’-OH – группу. ДНК – самые крупные органические молекулы. Их длина составляет у бактерий от 0,25 нм до 40 мм у человека (длина самой большой молекулы белка не более 200 нм). Масса молекулы ДНК – 6 х 10 -12 г.

1. Строение нуклеиновых кислот Каждая молекула ДНК состоит из двух антипараллельных полинуклеотидных цепей, образующих двойную спираль, закрученную (вправо, или влево) вокруг центральной оси. Антипараллельность обеспечивается соединением 5’-конца одной цепи с 3’-концом другой цепи и наоборот.

2. Строение нуклеиновых кислот Каждый нуклеозид (пентоза + основание) расположен в плоскости, перпендикулярной оси спирали.

3. Две цепи спирали скреплены водородными связями между основаниями А–Т (две) и Г–Ц (три).

4. Спаривание оснований высокоспецифично и происходит по принципу комплементарности, в результате возможны только пары А: Т, Г: Ц.

5. Последовательность оснований одной цепи может значительно варьировать, но последовательность их в другой цепи строго комплементарна.

ДНК обладает уникальными свойствами репликации (способностью к самоудвоению) и репарации (способностью к самовосстановлению).

Репликация ДНК – реакция матричного синтеза, процесс удвоения молекулы ДНК путем редупликации. В 1957 г. М. Дельбрюк и Г. Стент на основании результатов экспериментов предложили три модели удвоения молекулы ДНК:

— консервативная: предусматривает сохранность исходной двухцепочечной молекулы ДНК и синтез новой тоже двухцепочечной молекулы;

полуконсервативная: предполагает разъединение молекулы ДНК на моноцепочки в результате разрыва водородных связей между азотистыми основаниями двух цепей, после чего к каждому основанию, потерявшему партнера, присоединяется комплементарное основание; дочерние молекулы получаются точными копиями материнской молекулы;

дисперсная. заключается в распаде исходной молекулы на нуклеотидные фрагменты, которые реплицируются. После репликации новые и материнские фрагменты собираются случайно.

В том же, 1957 г. М. Мезельсон и Ф. Сталь экспериментально доказали реальность существования полуконсервативной модели на кишечной палочке. А через 10 лет, в 1967 г. японский биохимик Р. Оказаки расшифровал механизм репликации ДНК полуконсервативным способом.

Репликация осуществляется под контролем ряда ферментов и протекает в несколько этапов. Единицей репликации служит репликон – участок ДНК, который в каждом клеточном цикле только 1 раз приходит в активное состояние. Репликон имеет точки начала и конца репликации. У эукариот в каждой ДНК одновременно возникает множество репликонов. Точка начала репликации движется последовательно вдоль цепи ДНК в одном, или в противоположных направлениях. Перемещающийся фронт репликации представляет собой вилку – репликативная или репликационная вилка .

Как в любой реакции матричного синтеза в репликации выделяют три стадии.

Строение нуклеиновых кислот

Инициация. присоединение фермента хеликазы (геликазы) к точке начала репликации. Хеликаза расплетает короткие участки ДНК. После этого к каждой из разделившихся цепей присоединяется ДНК-связывающий белок (ДСБ), препятствующий воссоединению цепей. У прокариот имеется еще дополнительный фермент ДНК-гираза. который помогает хеликазе раскручивать ДНК.

Элонгация. последовательное комплементарное присоединение нуклеотидов, в результате чего цепь ДНК удлиняется.

Синтез ДНК идет сразу на обеих её цепях. Поскольку фермент ДНК-полимераза может собирать цепь нуклеотидов только в направлении от 5’ к 3’, то одна из цепей реплицируется непрерывно (в направлении репликативной вилки), а другая – прерывисто (с образованием фрагментов Оказаки), в противоположном движению репликативной вилки направлении. Первая цепь называется ведущей. а вторая – отстающей. Синтез ДНК идет при участии фермента ДНК-полимеразы. Аналогичным образом синтезируются фрагменты ДНК на отстающей цепи, которые затем сшиваются ферментами – лигазами.

Терминация. прекращение синтеза ДНК по достижении нужной длины молекулы.

Репарация ДНК – способность молекулы ДНК «исправлять» возникшие в ее цепях повреждения. В этом процессе принимают участие более 20 ферментов (эндонуклеазы, экзонуклеазы, рестриктазы, ДНК-полимеразы, лигазы). Они:

1) находят измененные участки;

2) вырезают и удаляют их из цепи;

3) восстанавливают правильную последовательность нуклеотидов;

4) сшивают восстановленный фрагмент ДНК с соседними участками.

ДНК выполняет в клетке особые функции, которые определяются её химическим составом, строением и свойствами: хранение, воспроизведение и реализация наследственной информации между новыми поколениями клеток и организмов.

Строение нуклеиновых кислот РНК распространены во всех живых организмах и представлены разнообразными по размерам, структуре и выполняемым функциям молекулами. Они состоят из одной полинуклеотидной цепи, образованной четырьмя видами мономеров – рибонуклеотидов: аденилового (А), урацилового (У), гуанилового (Г) и цитозилового (Ц). Каждый рибонуклеотид состоит из азотистого основания, рибозы и остатка фосфорной кислоты. Все молекулы РНК являются точными копиями определенных участков ДНК (генов).

Структура РНК определяется последовательностью рибонуклеотидов:

первичная – последовательность рибонуклеотидов в цепи РНК; это своеобразная запись генетической информации; определяет вторичную структуру;

вторичная – закрученная в спираль нить РНК;

третичная – пространственное расположение всей молекулы РНК; третичная структура включает в себя вторичную структуру и фрагменты первичной, которые соединяют один участок вторичной структуры с другим (транспортная, рибосомная РНК).

Вторичная и третичная структуры формируются за счет водородных связей и гидрофобных взаимодействий между азотистыми основаниями.

Информационная РНК (и-РНК) – программирует синтез белков клетки, поскольку каждый белок кодируется соответствующей и-РНК (и-РНК содержит информацию о последовательности аминокислот в белке, который должен синтезироваться); масса 10 4 -2х10 6 ; маложивущая молекула.

Транспортная РНК (т-РНК) – 70-90 рибонуклеотидов, масса 23 000-30 000; при реализации генетической информации она доставляет активированные аминокислоты к месту синтеза полипептида, «узнает» соответствующий участок и-РНК; в цитоплазме представлена двумя формами: т-РНК в свободной форме и т-РНК, связанная с аминокислотой; более 40 видов; 10%.

Имеет форму клеверного листа с двуцепочечным стеблем и тремя одноцепочечными петлями на его концах. В головке средней петли находится кодирующий триплет – антикодон. комплементарный соответствующему кодону в и-РНК. На 3’-цепи располагается триплет, к которому присоединяется аминокислота.

Строение нуклеиновых кислотРибосомная РНК (р-РНК) входит в состав рибосом, синтезируется в ядрышке и представлена разнообразными по массе молекулами; на ее долю приходится 85% всей РНК.

Ключевые слова и понятия :

Тема 4: Молекулярные основы наследственности и изменчивости

1. Нуклеиновые кислоты, их строение и функции

2. Основные этапы биосинтеза белков. Генетический код, его основные свойства

3. Регуляция экспрессии генов

1. Нуклеиновые кислоты, их строение и функции

Нуклеиновые кислоты – это линейные неразветвленные гетерополимеры, мономерами которых являются нуклеотиды, связанные фосфодиэфирными связями.

Нуклеотиды – это органические вещества, молекулы которых состоят из остатка пентозы (рибозы или дезоксирибозы), к которому ковалентно присоединены остаток фосфорной кислоты и азотистое основание. Азотистые основания в составе нуклеотидов делятся на две группы: пуриновые (аденин и гуанин) и пиримидиновые (цитозин, тимин и урацил).Дезоксирибонуклеотиды включают в свой состав дезоксирибозу и одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т), цитозин (Ц). Рибонуклеотиды включают в свой состав рибозу и одно из азотистых оснований: аденин (А), гуанин (Г), урацил (У), цитозин (Ц).

В ряде случаев в клетках встречаются и разнообразные производные от перечисленных азотистых оснований – минорные основания, входящие в состав минорных нуклеотидов.

Свободные нуклеотиды и сходные с ними вещества играют важную роль в обмене веществ. Например, НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат) служат переносчиками электронов и протонов.

Свободные нуклеотиды способны присоединять еще 1. 2 фосфорные группы, образуя макроэргические соединения. Универсальным источником энергии в клетке является АТФ – аденозинтрифосфорная кислота, состоящая из аденина, рибозы и трех остатков фосфорной (пирофосфорной) кислоты. При гидролизе одной концевой пирофосфатной связи выделяется около 30,6 кДж/моль (или 8,4 ккал/моль) свободной энергии, которая может использоваться клеткой. Такая пирофосфатная связь называется макроэргической (высокоэнергетической).

Кроме АТФ существуют и другие макроэргические соединения на основе нуклеотидов: ГТФ (содержит гуанин; участвует в биосинтезе белков, глюкозы), УТФ (содержит урацил; участвует в синтезе полисахаридов).

Нуклеотиды способны образовывать циклические формы, например, цАМФ, цЦМФ, цГМФ. Циклические нуклеотиды выполняют роль регуляторов различных физиологических процессов.

Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты обеспечивают хранение, воспроизведение и реализацию генетической (наследственной) информации. Эта информация отражена (закодирована) в виде нуклеотидных последовательностей. В частности, последовательность нуклеотидов отражает первичную структуру белков (см. ниже). Соответствие между аминокислотами и кодирующими их нуклеотидными последовательностями называется генетическим кодом. Единицей генетического кода ДНК и РНК является триплет – последовательность из трех нуклеотидов.

Нуклеиновые кислоты – это химически активные вещества. Они образуют разнообразные соединения с белками – нуклеопротеиды, или нуклеопротеины.

Дезоксирибонуклеиновая кислота (ДНК) – это нуклеиновая кислота, мономерами которой являются дезоксирибонуклеотиды. ДНК является первичным носителем наследственной информации. Это означает, что вся информация о структуре, функционировании и развитии отдельных клеток и целостного организма записана в виде нуклеотидных последовательностей ДНК.

Нуклеиновые кислоты были открыты Мишером в 1868 г. Однако лишь в 1924 г. Фёльген доказал, что ДНК является обязательным компонентом хромосом. В 1944 г. Эвери, Мак-Леод и Мак-Карти установили, что ДНК играет решающую роль в хранении, передаче и реализации наследственной информации.

Существует несколько типов ДНК: А, В, Z, Т–формы. Из них в клетках обычно встречается В–форма – двойная правозакрученная спираль, которая состоит из двух нитей (или цепей), связанных между собой водородными связями. Каждая нить представлена чередующимися остатками дезоксирибозы и фосфорной кислоты, причем, к дезоксирибозе ковалентно присоединяется азотистое основание. При этом азотистые основания двух нитей ДНК направлены друг к другу и за счет образования водородных связей образуют комплементарные пары: А=Т (две водородных связи) и Г≡Ц (три водородных связи). Поэтому нуклеотидные последовательности этих цепей однозначно соответствуют друг другу. Длина витка двойной спирали равна 3,4 нм, расстояние между смежными парами азотистых оснований 0,34 нм, диаметр двойной спирали 1,8 нм.

Длина ДНК измеряется числом нуклеотидных пар (сокращ. – пн). Длина одной молекулы ДНК колеблется от нескольких тысяч пн (сокращ. – тпн) до нескольких миллионов пн (мпн). Например, у наиболее простых вирусов длина ДНК составляет примерно 5 тпн, у наиболее сложных вирусов – свыше 100 тпн, у кишечной палочки

3,8 мпн, у дрожжей

13,5 мпн, у мушки дрозофилы

105 мпн, у человека

2900 мпн (размеры ДНК даны для минимального набора хромосом – гаплоидного). Длину ДНК можно выразить и в обычных метрических единицах длины: общая длина молекулы ДНК у кишечной палочки составляет

1,3 мм, а длина молекулы ДНК в составе первой хромосомы человека

16 см, а длина ДНК во всем геноме человека (в 23 хромосомах)

1 метр. В эукариотических клетках ДНК существует в виде нуклеопротеиновых комплексов, в состав которых входят белки-гистоны.

Репликация (самоудвоение) ДНК – это один из важнейших биологических процессов, обеспечивающих воспроизведение генетической информации. В результате репликации одной молекулы ДНК образуется две новые молекулы, которые являются точной копией исходной молекулы – матрицы. Каждая новая молекула состоит из двух цепей – одной из родительских и одной из сестринских. Такой механизм репликации ДНК называется полуконсервативным.

Реакции, в которых одна молекула гетерополимера служит матрицей (формой) для синтеза другой молекулы гетерополимера с комплементарной структурой, называются реакциями матричного типа. Если в ходе реакции образуются молекулы того же вещества, которое служит матрицей, то реакция называется автокаталитической. Если же в ходе реакции на матрице одного вещества образуются молекулы другого вещества, то такая реакция называется гетерокаталитической. Таким образом, репликация ДНК (то есть синтез ДНК на матрице ДНК) является автокаталитической реакцией матричного синтеза.

К реакциям матричного типа относятся, в первую очередь, репликация ДНК (синтез ДНК на матрице ДНК), транскрипция ДНК (синтез РНК на матрице ДНК) и трансляция РНК (синтез белков на матрице РНК). Однако существуют и другие реакции матричного типа, например, синтез РНК на матрице РНК и синтез ДНК на матрице РНК. Два последних типа реакций наблюдаются при заражении клетки определенными вирусами. Синтез ДНК на матрице РНК (обратная транскрипция) широко используется в генной инженерии.

Все матричные процессы состоят из трех этапов: инициации (начала), элонгации (продолжения) и терминации (окончания).

Репликация ДНК – это сложный процесс, в котором принимает участие несколько десятков ферментов. К важнейшим из них относятся ДНК-полимеразы (несколько типов), праймазы, топоизомеразы, лигазы и другие. Главная проблема при репликации ДНК заключается в том, что в разных цепях одной молекулы остатки фосфорной кислоты направлены в разные стороны, но наращивание цепей может происходить только с того конца, который заканчивается группой ОН. Поэтому в реплицируемом участке, который называется вилкой репликации, процесс репликации протекает на разных цепях по-разному. На одной из цепей, которая называется ведущей, происходит непрерывный синтез ДНК на матрице ДНК. На другой цепи, которая называется запаздывающей, вначале происходит связывание праймера – специфического фрагмента РНК. Праймер служит затравкой для синтеза фрагмента ДНК, который называется фрагментом Оказаки. В дальнейшем праймер удаляется, а фрагменты Оказаки сшиваются между собой в единую нить фермента ДНК–лигазы. Репликация ДНК сопровождается репарацией – исправлением ошибок, неизбежно возникающих при репликации. Существует множество механизмов репарации.

Рибонуклеиновая кислота (РНК) – это нуклеиновая кислота, мономерами которой являются рибонуклеотиды.

В пределах одной молекулы РНК имеется несколько участков, которые комплементарны друг другу. Между такими комплементарными участками образуются водородные связи. В результате в одной молекуле РНК чередуются двуспиральные и односпиральные структуры, и общая конформация молекулы напоминает клеверный лист на черешке.

Азотистые основания, входящие в состав РНК, способны образовывать водородные связи с комплементарными основаниями и ДНК, и РНК. При этом азотистые основания образуют пары А=У, А=Т и Г≡Ц. Благодаря этому возможна передача информации от ДНК к РНК, от РНК к ДНК и от РНК к белкам.

В клетках обнаруживается три основных типа РНК, выполняющих различные функции:

1. Информационная, или матричная РНК (иРНК, или мРНК). Составляет 5% клеточной РНК. Служит для передачи генетической информации от ДНК на рибосомы при биосинтезе белка. В эукариотических клетках иРНК (мРНК) стабилизирована с помощью специфических белков. Это делает возможным продолжение биосинтеза белка даже в том случае, если ядро неактивно.

2. Рибосомная, или рибосомальная РНК (рРНК). Составляет 85% клеточной РНК. Входит в состав рибосом, определяет форму большой и малой рибосомных субъединиц, обеспечивает контакт рибосомы с другими типами РНК.

3. Транспортная РНК (тРНК). Составляет 10% клеточной РНК. Транспортирует аминокислоты к соответствующему участку иРНК в рибосомах. Каждый тип тРНК транспортирует определенную аминокислоту.

В клетках имеются и другие типы РНК, выполняющие вспомогательные функции.

Все типы РНК образуется в результате реакций матричного синтеза. В большинстве случаев матрицей служит одна из цепей ДНК. Таким образом, синтез РНК на матрице ДНК является гетерокаталитической реакцией матричного типа. Этот процесс называется транскрипцией и контролируется определенными ферментами – РНК–полимеразами (транскриптазами).

Строение нуклеиновых кислот

Нуклеиновые кислоты представляют собой полинуклеотидные цепи, в которых отдельные нуклеотиды соединены между собой через остатки фосфорной кислоты. При этом, остаток фосфорной кислоты одного нуклеотида взаимодействует с третьим атомом углерода углеводного компонента другого нуклеотида.

Встречаются два типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК), различающиеся между собой по нуклеотидному составу. Углеводным компонентом РНК является рибоза, а ДНК — дезоксирибоза. В составе РНК встречаются четыре основных азотистых основания — аденин, гуанин, цитозин и урацил. Нуклеотиды, образующие ДНК, также содержат четыре основных азотистых основания — аденин, гуанин, цитозин и тимин.

При схематическом изображении строения нуклеиновых кислот для обозначения азотистых оснований используются однобуквенные символы: А — аденин, Г — гуанин, Ц — цитозин, У — урацил, Т — тимин.

Один конец РНК заканчивается свободным остатком фосфорной кислоты, который присоединен к пятому атому углерода сахара. Этот конец считают началом полинуклеотидной цепи и называют 5-концом. На другом конце РНК у третьего атома углерода сахара оказывается свободной гидроксильная группа. Этот конец называют 3-концом и считают окончанием полинуклеотидной цепи.

Молекулу ДИК, в большинстве случаев, образуют две полинуклеотидные цепи, закрученные одна относительно другой в двойную правовитковую спираль таким образом, что остатки фосфорной кислоты и дезоксирибозы располагаются снаружи, а азотистые основания — внутри спирали. Эту модель строения ДНК впервые предложили в 1953 г. американский биохимик Д. Уотсон и английский биофизик и генетик Ф. Крик.

Еще в 1951 г. американский биохимик Э. Чаргафф установил, что в ДНК различного происхождения содержится равное число молей аденина и тимина, а также гуанина и цитозина. Он сформулировал правило, согласно которому в молекуле двуспиральной ДНК сумма пуриновых оснований равна сумме пиримидиновых.

Это позволило Д. Уотсону и Ф. Крику предположить, что в одной цепи ДНК записан план построения ее второй цепи. При этом азотистые основания обеих цепей связываются между собой водородными связями. Азотистые основания образуют пары в точном соответствии с правилом Э. Чаргаффа: аденин связывается с тимином двумя водородными связями, а гуанин с цитозином — тремя. Это свойство получило название комплементарности азотистых оснований (лат. complementum — дополнение). Аденин комплементарен тимину, а гуанин — цитозину.

Полинуклеотидные цепи ДНК антипараллельны.

Установлены параметры двойной спирали ДНК. Ее диаметр составляет 2 нм, а длина одного витка одной нити ДНК — 3,4 нм. Число нуклеотидов в одном витке одной нити спирали равно 10.

Помимо различий в составе нуклеотидов и строении молекул, РНК и ДНК существенно различаются по молекулярным массам. Молекулярные массы РНК колеблются в интервале от нескольких десятков тысяч до 4-5 миллионов дальтон. Однако молекулярные массы гигантских молекул ДНК намного больше и колеблются в пределах от нескольких миллионов дальтон у простейших организмов и до 1000-1012 дальтон у высших.

Состав нуклеиновых кислот

Различаются нуклеиновые кислоты и по месту локализации в клетке. ДНК содержится, главным образом, в ядре, а РНК — как в цитоплазме, так и в ядре клетки. Все эти различия свидетельствуют о том, что каждый тип нуклеиновой кислоты выполняет в обмене веществ свои специфические биологические функции.

Поделитесь ссылкой с друзьями

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *